Расчет отопления помещения, как рассчитать, формулы, программа

Расчет отопления в частном доме

Расчет отопления в частном доме с помощью онлайн-калькулятора – рассчитайте теплопотери, мощность котла и секции радиаторов отопления по СНиП.

В процессе строительства любого дома, рано или поздно возникает вопрос – как правильно рассчитать систему отопления? Это актуальная проблема не исчерпает свой ресурс никогда, ведь если вы купите котел меньшей мощности, чем необходимо, придется затратить много сил для создания вторичного обогрева масляными и инфракрасными радиаторами, тепловыми пушками, электрокаминами, что также приведет к колоссальному расходу электроэнергии. Если же вы создадите систему отопления с чрезмерным запасом, то оборудование будет работать в половину мощности, а топлива будет потреблять практически столько же.

Наш калькулятор расчета отопления частного дома поможет вам не допустить типичных ошибок начинающих строителей. Вы получите максимально приближенное к реальности значение теплопотерь, производительности оборудования, количества секций радиатора и прочих данных, необходимых для создания надежной системы отопления. Главным преимуществом калькуляторов КАЛК.ПРО является высокая точность расчетных данных и минимальные знания со стороны пользователя – весь процесс автоматизирован, исходные параметры максимально обобщены, а их значения вы можно легко заполнить, опираясь на собственный опыт.

Система отопления своими руками

Выполнить расчёт системы отопления частного дома без оценки теплопотерь окружающих конструкций невозможно.

В России, как правило, долгие холодные зимы, здания теряют тепло из-за перепадов температур внутри и снаружи помещений. Чем больше площадь дома, ограждающих и сквозных конструкций (кровля, окна, двери), тем большее значение теплопотерь выходит. Существенное влияние оказывает материал и толщина стен, наличие или отсутствие теплоизоляции.

Например, стены из дерева и газобетона обладают намного меньшим показателем теплопроводности, чем кирпич. Материалы с максимальными показателями теплового сопротивления используются в качестве изоляции (минеральная вата, пенополистирол).

Перед созданием отопительной системы дома, нужно тщательно продумать все организационные и технические моменты, чтобы сразу после постройки «коробки», приступить к финальной фазе строительства, а не откладывать на долгие месяцы долгожданное заселение.

Отопление в частном доме базируется на «трех слонах»:

  • нагревательный элемент (котел);
  • система труб;
  • радиаторы.

Какой котел лучше выбрать для дома?

Котлы отопления являются главным компонентом всей системы. Именно они будут обеспечивать тепло вашего дома, поэтому к их выбору нужно относиться особенно внимательно. По типу питания их подразделяют на:

  • электрические;
  • твердотопливные;
  • жидкотопливные;
  • газовые.

Каждый из них имеет ряд существенных преимуществ и недостатков.

  1. Электрические котлы не завоевали большой популярности, в первую очередь из-за достаточно большой стоимости и дороговизне в обслуживании. Тарифы на электроэнергию оставляют желать лучшего, есть вероятность разрыва линий электропередач, в результате которого ваш дом может остаться без отопления.
  2. Твердотопливные котлы часто используются в глухих деревнях и поселках, где нет централизованных коммуникационных сетей. Они нагревают воду за счет дров, брикетов и угля. Важным недостатком является необходимость постоянного контроля горючего, в случае, если топливо прогорит, и вы не успеете пополнить запасы, дом перестанет отапливаться. В современных моделях эта проблема решена, за счет автоматического податчика, но цена таких устройств намного выше.
  3. Жидкотопливные котлы, в подавляющем большинстве случаев, работают на дизельном топливе. Они обладают отличной производительностью из-за высокого КПД горючего, но большая цена на сырье и потребность резервуаров с дизелем, ограничивает многих покупателей.
  4. Самым оптимальным решением для загородного дома являются газовые котлы. Из-за небольшого размера, низкой цены на газ и высокой теплоотдачи они завоевали доверие большей части населения.

Как выбрать трубы для отопления?

Магистрали отопления снабжают все обогревательные устройства в доме. В зависимости от материала изготовления, они подразделяются на:

  • металлические;
  • металлопластиковые;
  • пластиковые.

Трубы из металла наиболее сложные в монтаже (из-за необходимости сварки швов), подвержены коррозии, обладают большим весом и дорого стоят. Преимуществами является высокая прочность, устойчивость к перепадам температур и способность выдерживать большие давления. Они используются в многоквартирных домах, в частном строительстве применять их нецелесообразно.

Полимерные трубы из металлопластика и полипропилена очень схожи по своим параметрам. Легкость материала, пластичность, отсутствие коррозии, подавление шумов и, конечно же, низкая цена. Единственным отличием первых, является наличие алюминиевой прослойки между двумя слоями пластика, из-за которого увеличивается показатель теплопроводности. Поэтому трубы из металлопластика применяются для отопления, а пластиковые для водоснабжения.

Выбираем радиаторы для дома

Последний элемент классической системы отопления – радиаторы. Они также разделяются по материалу на следующие группы:

  • чугунные;
  • стальные;
  • алюминиевые;
  • биметаллические.

Чугунные батареи знакомы всем с детства, потому что устанавливались почти во всех многоквартирных домах. Они обладают высокими показателями теплоемкости (долго остывают), устойчивы к перепадам температур и давлений в системе. Минусом является большая цена, хрупкость и сложность монтажа.

На смену им пришли стальные радиаторы. Большое разнообразие форм и размеров, небольшая стоимость и простота установки повлияли на повсеместное распространение. Тем не менее, у них тоже есть свои недостатки. Из-за низкой теплоемкости батареи быстро остывают, а тонкий корпус не позволяет использовать их в сетях с высоким давлением.

В последнее время набирают популярность обогреватели из алюминия. Их главным преимуществом является высокая теплоотдача, это позволяет прогревать комнату до приемлемой температуры за 10-15 минут. Однако они требовательны к теплоносителю, если внутри системы в больших количествах содержится щелочи или кислоты, то срок службы радиатора значительно сокращается.

Также сейчас широкое распространение получают биметаллические радиаторы, у которых внутренние стенки выполнены из устойчивой к коррозии и давлению стали, а снаружи из алюминия с высокими показателями теплоотдачи. Обогреватели обладают высоким сроком службы около 20-30 лет. Благодаря подобным качествам это самые дорогие изделия на рынке, однако они более чем оправдывают свою стоимость.

Используйте предложенные инструменты для расчета отопления частного дома и проектируйте систему отопления, которая будет эффективно, надежно и долго обогревать ваш дом, даже в самые суровые зимы.

OtoplenieCalc.ru — онлайн калькуляторы расчета отопления

Калькуляторы отопления онлайн

Наш калькулятор поможет вам быстро и максимально точно рассчитать мощность отопительных приборов для дома на основе нескольких параметров, подсчитать количество секций в радиаторах и узнать о расходах на отопление.

Правильный расчёт отопительной системы – важнейший этап на стадии строительства дома. От того, насколько правильно вы подберете котел и количество радиаторов зависит эффективность отопления и расходы на него. Ведь если, например, установить котел меньшей мощности, чем нужно, или недостаточное количество радиаторов, то в холодное время года вам придется пользоваться дополнительными источниками тепла – а это значит, что затраты на обогрев помещения вырастут в разы.

Чтобы облегчить вам расчет системы отопления, мы создали простые, удобные и максимально точные калькуляторы, которые позволят не допустить критичных ошибок при расчетах.

Бесплатные онлайн калькуляторы расчета отопления

Расчет мощности котла и теплопотерь

Просто введите и выберите готовые значения и нажмите на кнопку “Рассчитать”. Вы получите нужные вам данные: мощность котла и теплопотери дома

Расчет количества секций радиаторов отопления

Калькулятор позволяет правильно рассчитать количество секций в радиаторах отопления для максимальной эффективности.

Посчитать расходы и сравнить

После расчета вы сможете узнать, сколько вы тратите на отопление и сравнить затраты с тем или иным источником тепла.

Проектирование отопления дома

Оборудовать котельную

Котельная должна быть оборудована в соответствии с требованиями, так что к этому вопросу нужно подойти серьезно.

Рассчитать мощность и типа котла

От мощности котла зависит эффективность всей отопительной системы. Если вы выбрали слабый котел, то готовьтесь к дополнительным тратам.

Рассчитать количество радиаторов и секций в них

Это тоже важный параметр, недостаточное количество радиаторов снижает эффективность отопительной системы.

Выбрать схему подключения радиаторов

Система подключения радиаторов отопления может быть однотрубной, двухтрубной, лучевой или выполнена по схеме Тихельмана

Монтаж котла, обвязка, подключение радиаторов

На этом этапе следует тщательно продумать схему обвязки котла, подключения радиаторов, циркуляционного насоса, расширительного бака и других элементов

Заполнение системы теплоносителем и запуск

На последнем шаге остается только наполнить систему водой или антифризом, а потом запустить и протестировать систему отопления.

Для обеспечения комфортного проживания в холодное время года еще на этапе проецирования частного дома нужно позаботиться о расчете и монтаже отопления. Правильно произведенные тепловые калькуляции позволят определить оптимальную и экономически выгодную отопительную систему. Любая погрешность может привести к тому, что вы будете мерзнуть либо в здание будет жарко и душно.

Самостоятельные расчеты не окажутся проблемой для людей с техническим образованием. Однако не каждый обладает физико-математическими навыками, поэтому хорошим путеводителем в подсчетах будет онлайн калькулятор. Он поможет выявить тепловые потери дома и вычислить мощность, которой должен обладать котел. Так же определит количество необходимых радиаторов и сколько должно быть в нем секций. Сделает за вас расчет затрат на отопление, что пригодится для выбора подходящего источника тепла. Соберите нужные данные для вычисления.

Определите тепловые потери. Для этого, необходимо знать, из какого материала построены внешние стены и напольные покрытия, чем утеплены и их толщину. Измерьте площадь дома, окон и наружных дверей. Высокая интенсивность потери тепла у вентиляции и канализации. Их тоже нужно учитывать в расчетах.

Климатические условия местонахождения дома играют важную роль в выборе отопительной системы. Узнайте среднегодовую и минимальную температуру в вашем регионе, а также среднюю скорость ветра.

Расчет мощности котла и теплопотерь.

Собрав все необходимые показатели, приступайте к калькуляции. Конечный результат укажет количество расходуемого тепла и сориентирует вас на выбор котла. При расчете теплопотерь за основу берутся 2 величины:

  1. Разница температуры снаружи и внутри здания (ΔT);
  2. Теплозащитные свойства объектов дома (R);

Для выявления расхода тепла ознакомимся с показателями сопротивления теплопередачи некоторых материалов

Таблица 1. Теплозащитные свойства стен

толщина в 3 кирпича (79 сантиметров)

толщина в 2.5 кирпича (67 сантиметров)

толщина в 2 кирпича (54 сантиметров)

Данные в таблице указаны с температурной разницей 50 °(на улице -30°,а в помещение +20°)

Таблица 2. Тепловые расходы окон

Тип окна RT q. Вт/ Q. Вт
Обычное окно с двойными рамами 0.37 135 216
Стеклопакет (толщина стекла 4 мм)

RT — сопротивление теплопередачи;

  1. Вт/м^2 – количество тепла, которое расходуется на один кв. м. окна;

четные цифры указывают на воздушное пространство в мм;

Ar — зазор в стеклопакете заполнен аргоном;

К – окно имеет наружное тепловое покрытие.

Имея в наличии стандартные данные о теплозащитных свойствах материалов, и определив перепад температур легко рассчитать тепловые потери. На пример:

Снаружи — 20°С., а внутри +20°С. Стены построены из бревна диаметром 25см. В этом случае

R = 0.550 °С· м2/ Вт. Тепловой расход будет равен 40/0.550=73 Вт/ м2

Теперь можно приступить к выбору источника тепла. Существуют несколько видов котлов:

  • Электрические котлы;
  • Газовые котлы
  • Нагреватели на твердом и жидком топливе
  • Гибридные (электрические и на твердом топливе)

Перед тем как приобрести котел, вы должны знать, какая мощность потребуется для поддержания благоприятной температуры в доме. Для этого существуют два способа определения:

  1. Расчет мощности по площади помещений.

По статистике принято считать, что для нагрева 10 м2 требуется 1 кВт теплоэнергии. Формула применима в случае, когда высота потолка не более 2,8 м и дом средне утеплен. Суммируем площадь всех комнат.

Получаем, что W=S×Wуд/10, где W- мощность теплогенератора, S-общая площадь здания, а Wуд является удельной мощность, которая в каждом климатическом поясе своя. В южных регионах она 0,7-0,9 кВт, в центральных 1-1,5 кВт, а на севере от 1,5 кВт до 2 кВт. Допустим, котел в доме площадью 150 кв.м, который находится в средних широтах должен обладать мощностью 18-20кВт. Если потолки выше стандартных 2,7м, например, 3м, в этом случае 3÷2,7×20=23 (округляем)

  1. Расчет мощности по объему помещений.

Этот тип вычислений можно произвести, придерживаясь строительных норм и правил. В СНиП прописан расчет мощности отопления в квартире. Для кирпичного дома на 1 м3 приходится 34 Вт, а в панельном – 41 Вт. Объем жилья определяется умножением площади на высоту потолка. Например, площадь апартаментов 72 кв.м., а высота потолков 2,8 м. Объем будет равен 201,6 м3. Так, для квартиры в кирпичном доме мощность котла будет равна 6,85 кВт и 8,26 кВт в панельном. Правка возможна в следующих случаях:

  • На 0.7, когда этажом выше или ниже находится неотапливаемая квартира;
  • На 0.9, если ваша квартира на первом или последнем этаже;
  • Коррекция производится при наличии одной внешней стены на 1,1, две – на 1,2.

Расчёт радиаторов отопления на квадратный метр

Несмотря на разнообразие рынка отопительных систем, радиаторы всегда остаются в тренде. Однако владельцы отопительного оборудования часто допускают ошибки в его эксплуатации. Самая распространенная является несоответствие теплоотдачи батареи с площадью помещения. Самым простым способом расчёта батареи является 100 Вт на 1 м2. Зная площадь комнаты, умножьте ее на 100.

Если радиатор многосекционный, то воспользуйтесь формулой: N = Q/ Qус, где N это количества секции, а Qус – мощность каждой секции по отдельности. В случае, когда высота потолков превышает 2,7 м., воспользуйтесь расчетом по объему. Для более точной информации теплоотдачи можно воспользоваться коэффициентами:

  • Количество внешних стен (Кф. 1.1, 1.2);
  • Направленность комнаты на стороны света (Кф. 1.1, если на север и восток);
  • Коэффициент утепления стен (0.85, 1, 1.27);
  • Климатические условия (-35° — Кф. 1.5, -25°- Кф. 1.3, -15°- Кф. 1.1, -10° — Кф 0.7);
  • Высота потолков (Кф. От 1 до 1.2);
  • Этаж квартиры (Кф. От 1 до 0.8);

Тип оконной рамы (из дерева -1.27, однослойный стеклопакет – 1, двойной стеклопакет – 0.85);

Q = S × 100 ×… (значение коэффициента)

Расчет затрат на отопление

Хорошая отопительная система требует достаточно больших финансовых вложений. Основные расходы связаны с:

  1. Оборудование отопительной системы. В него входят котел, насос, радиаторы и материал для разводки.
  2. Установка обогревательной системы.
  3. Затраты на топливо. Количество потраченных денег зависит от выбранного вами топлива.
  4. Поддержка оборудования в рабочем состояние.

При расчете затрат нужно учитывать удельную теплоту сгорания. Рассчитайте путем деления теплопотери за сезон на теплотворность сырьевого продукта и получите количество использованного топлива. Умножьте на стоимость за единицу измерения.

Еще один метод подсчета — это расход кВт в час. На дом, площадью 120 м2 потребляется 12 кВт теплоэнергии. В месяц выходит 8640 кВт. Способ подходит для пользователей газа и электричества

Калькулятор расчета платы за отопление по формуле №3

Формула №3 согласно Правилам:

В формуле №3 используются следующие значения:

Pi – размер платы за отопление по Вашей квартире или нежилому помещению, который получится в результате расчета в рублях.

Si – общая площадь Вашей квартиры (жилого помещения) или нежилого помещения (магазин, офис, аптека или другое помещение, расположенное в МКД) (м 2 ).

S об – общая площадь всех жилых помещений (квартир) и нежилых помещений (магазины, офисы, аптеки или другие помещения), расположенных в многоквартирном доме (м 2 ).

V д – объем (количество) тепловой энергии по показаниям общедомового прибора учета, если расчет размера платы осуществляется в течение отопительного периода, или исходя из среднемесячного объема тепловой энергии, определенного по показаниям общедомового прибора учета за предыдущий год (Гкал).

T T – тариф (цена) на тепловую энергию, установленный в Вашем регионе для Вашего поставщика тепловой энергии (руб./Гкал).

Vi – объем (количество) тепловой энергии, которое приходится на Вашу квартиру (жилое помещение) или нежилое помещение (магазин, офис, аптека или другое помещение, расположенное в МКД), рассчитывается по формуле 3(6).

∑Vi – сумма объемов тепловой энергии, потребленной во всех жилых помещениях (квартирах) и нежилых помещениях (магазины, офисы или другие помещения, расположенные в МКД), определенных по формуле 3(6).

Формула 3(6) согласно Правилам:

В формуле №3(6) используются следующие значения:

Si – общая площадь Вашей квартиры (жилого помещения) или нежилого помещения (магазин, офис, аптека или другое помещение, расположенное в МКД) (м 2 ).

S об – общая площадь всех жилых помещений (квартир) и нежилых помещений (магазины, офисы, аптеки или другие помещения), расположенных в многоквартирном доме (м 2 ).

S ои – общая площадь помещений, входящих в состав общего имущества в многоквартирном доме (помещения общего пользования) (м 2 ).

При определении размера платы за коммунальную услугу по отоплению общая площадь помещений, входящих в состав общего имущества в МКД, определяется как суммарная площадь следующих помещений, не являющихся частями квартир МКД и предназначенных для обслуживания более одного помещения в многоквартирном доме (согласно сведениям, указанным в паспорте многоквартирного дома): межквартирных лестничных площадок, лестниц, коридоров, тамбуров, холлов, вестибюлей, колясочных, помещений охраны (консьержа), не принадлежащих отдельным собственникам.

S инд – общая площадь жилых помещений (квартир) и нежилых помещений (магазины, офисы, аптеки или другие помещения), расположенных в многоквартирном доме, в которых отсутствуют приборы отопления (радиаторы, батареи), или в которых используются индивидуальные источники тепловой энергии, то есть помещения, которые не используют централизованную систему теплоснабжения многоквартирного дома для обогрева своих помещений (м 2 ).

V д – объем (количество) тепловой энергии по показаниям общедомового прибора учета, если расчет размера платы осуществляется в течение отопительного периода, или исходя из среднемесячного объема тепловой энергии, определенного по показаниям общедомового прибора учета за предыдущий год (Гкал).

Пример расчета размера платы за отопление по формуле №3

В многоквартирном доме имеются жилые помещения (квартиры) или нежилые помещения (магазины, офисы, аптеки или другие помещения, расположенные в МКД), имеющие индивидуальные источники тепловой энергии, или в которых отсутствуют приборы отопления (радиаторы, батареи), то есть помещения, которые не используют централизованную систему теплоснабжения многоквартирного дома для обогрева своих помещений.

В первую очередь определим, что данный расчет производится:

1. Для квартиры (жилого помещения), расположенной в многоквартирном доме, имеющей индивидуальные источники тепловой энергии;

2. На многоквартирном доме установлен общедомовой прибор учета на отопление;

3. Нежилые помещения (магазины, офисы, аптеки или другие помещения) в многоквартирном доме отсутствуют;

4. Во всех жилых помещениях (квартирах) отсутствуют индивидуальные приборы тепловой энергии (ИПУ);

5. Оплата за отопление осуществляется осуществляется в отопительный период.

ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА:

1. Площадь Вашей квартиры – 45 м 2 ( Si – в формуле);

2. Общая площадь всех жилых помещений (квартир) в доме – 6000 м 2 ( S об – в формуле );

3. Общая площадь помещений, входящих в состав общего имущества МКД (помещения общего пользования) – 350 м 2 ( S ои – в формуле);

4. Объем тепловой энергии по показаниям общедомового прибора учета на отопление – 140 Гкл ( V д – в формуле);

5. Тариф на тепловую энергию, установленный в Вашем регионе для Вашего поставщика тепловой энергии – 1650 руб./Гкл ( Т т — в формуле);

6. Общая площадь жилых помещений (квартир), имеющих индивидуальные источники тепловой энергии или помещений, в которых отсутствуют приборы отопления, составляет – 1400 м 2 , в том числе общая площадь Вашей квартиры 45 м 2 ( S инд – в формуле). То есть помещения, которые не используют централизованную систему теплоснабжения многоквартирного дома для обогрева своих помещений.

Размер платы за отопление по Вашей квартире будет рассчитываться следующим образом:

1. Объем (количество) тепловой энергии, которое приходится на Вашу квартиру – составляющая Vi будет равна 0.

2. Затем рассчитаем составляющую ∑Vi , то есть сумму объемов тепловой энергии, потребленной во всех жилых помещениях (квартир), за исключением помещений, имеющих индивидуальны источники тепловой энергии, или в которых отсутствуют приборы отопления (радиаторы, батареи).

Для этого необходимо объем тепловой энергии, определенной по показаниям ОДПУ ( V д – 140 Гкл) разделить на сумму общей площади всех жилых помещений (квартир), за исключением квартир, имеющих индивидуальные источники тепловой энергии, и общей площади помещений входящих в состав общего имущества ( S об 6000 м 2 + S ои 350 м 2 – S инд 1400 м2), а затем умножить на общую площадь всех жилых помещений (квартир), не имеющих индивидуальные источники тепловой энергии ( S об 6000 м2 – S инд 1400 м2).

130,10101 Гкл – это объем тепловой энергии (отопления), потребленной во всех жилых помещениях (квартирах) – ∑Vi , за исключением помещений, имеющих индивидуальные источники тепловой энергии.

3. Теперь, когда все составляющие формулы формулы 3 известны, рассчитаем размер платы:

Итого плата за отопление по Вашей квартире будет составлять – 122,50 руб.

Расчет отопления

Расчет тепловой нагрузки посредством использования увеличенных показателей

Для того чтобы максимально правильно определить размер необходимого количества топлива, осуществить расчет киловатт отопления, а также просчитать наибольшую эффективность работы отопительной системы при условии использования условленного типа горючего, специалистами жилищно-коммунальных служб была создана специальная методика и программа для расчета отопления, по которой получать необходимую информацию, используя заранее известные факторы, значительно проще.

Такая методика позволяет правильно произвести расчет отопления – нужное количество топлива любого типа.

А, кроме того, полученные результаты являются важным показателем, который непременно учитывается при расчете тарифов за услуги жилищно-коммунального хозяйства, а также при составлении сметы финансовых потребностей данной организации. Ответим же на вопрос, как правильно рассчитать отопление по увеличенным показателям.

Особенности методики

Данная методика, которую можно использовать, применяя калькулятор расчета отопления, регулярно используется для расчета технико-экономической эффективности внедрения различного типа энергосберегающих программ, а также во время применения нового оборудования и запуска энергоэффективных процессов.

Для того чтобы произвести расчет отопления помещения – расчет тепловой нагрузки (часовой) в отопительной системе отдельного здания, можно использовать формулу:

В данной формуле, производящей расчет отопления здания:

  • а – коэффициент, показывающий возможную поправку разницы температуры внешнего воздуха при расчете эффективности работы отопительной системы, где to от to = -30°С, и при этом определяется необходимый параметр q0;
  • Показатель V (м 3 ) в формуле – это внешний объем отапливаемого здания (его можно найти в проектной документации здания);
  • q0 (ккал/м3 ч°С)является при отоплении здания удельной характеристикой с учетом to = -30°С;
  • Kи.р выступает коэффициентом инфильтрации, который учитывает такие дополнительные характеристики, как сила ветра, тепловой поток. Данный показатель указывает на расчет затрат на отопление – это уровень теплопотерь здания при инфильтрации, при этом теплопередача осуществляется по внешнему ограждению, и учитывается температура внешнего воздуха, применяемая ко всему проекту.

В случае если в здании, по которому проводится расчет отопления онлайн, присутствует чердак (чердачное перекрытие), то показатель V вычисляется методом произведения показателя горизонтального сечения здания (имеется ввиду показатель, полученный на уровне пола 1-го этажа) на высоту здания.

При этом высота определяется до верхней точки теплоизоляции чердачного помещения. Если же в здании крыша совмещена с чердачным перекрытием, то формула расчета отопления использует показатель высоты здания до средней точки крыши. Следует отметить, что в случае наличия в здании выступающих элементов и ниш, они не учитываются при вычислении показателя V.

Перед тем, как рассчитывается отопление, следует учесть, что если в здании есть цокольное помещение или подвал, который также нуждается в отапливании, то следует к показателю V добавить и 40% площади этого помещения.

После того, как рассчитать объем потребления отопления, для определения площади цокольного этажа (подвала) следует умножить площадь его горизонтального сечения на высоту.

Для определения показателя Kи.р используется следующая формула:

  • g – ускорение, получаемое при свободном падении (м/с 2 );
  • L – высота дома;
  • w0 – согласно СНиП 23-01-99 – условная величина скорости ветра, присутствующего в данном регионе в отопительный период;

В тех регионах, где используется расчетный показатель температуры внешнего воздуха t0 £ -40, при создании проекта отопительной системы, перед тем, как как рассчитать отопление помещения, следует добавлять теплопотерю в 5%. Это допустимо в тех случаях, если планируется, что в доме будет неотапливаемый подвал. Такая теплопотеря вызвана тем, что пол помещений 1-го этажа будет всегда холодным.

Для каменных домов, возведение которых уже закончено, следует учитывать более высокую теплопотерю в первый отопительный период и вносить определенные поправки. При этом расчет отопления по укрупненным показателям учитывает срок окончания строительства:

Отопительный сезон (октябрь-апрель) – 30%.

Для расчета удельной отопительной характеристики здания q0 (ккал/м 3 ч) следует рассчитывать по такой формуле:

Горячее водоснабжение

После того, как рассчитать отопление, для определения среднего показателя нагрузки горячего водоснабжения в отопительный период следует использовать следующую формулу:

  • а – норма потребления горячей воды абонентом (л/ед) в сутки. Данный показатель утверждается местными органами власти. Если же норма не утверждена – показатель берется из таблицы СНиП 2.04.01-85 (приложение 3).
  • N – количество жителей (учеников, работников) в здании, соотносимое к суткам.
  • tc – показатель температуры воды, подаваемой в отопительный сезон. В случае если данный показатель отсутствует, берется приближенное значение, а именно — tс = 5 °С.
  • Т – определенный отрезок времени в сутки, когда осуществляется горячее водоснабжение абонента.
  • Qт.п – показатель теплопотери в системе горячего водоснабжения. Чаще всего данный показатель отображает теплопотерю наружного циркуляционного и подающего трубопровода.

Для определения среднего показателя тепловой нагрузки системы горячего водоснабжения в период, когда отопление отключено, следует производить вычисления по формуле:

  • Qhm – средняя величина уровня тепловой нагрузки системы горячего водоснабжения в отопительный период. Единица измерения — Гкал/ч.
  • b – показатель, демонстрирующий степень снижения часовой нагрузки в системе горячего водоснабжения в неотопительный период, по сравнению с тем же показателем отопительного периода. Такой показатель должен определяться городским самоуправлением. В случае если значение показателя не определено, используется усредненный параметр:
  • 0,8 для ЖКХ городов, расположенных в средней полосе России;
  • 1,2-1,5 – показатель, применимый для южных (курортных) городов.

Для предприятий, расположенных в любом регионе России, используется единый показатель – 1,0.

  • ths, th — показатель температуры горячей воды, подаваемой абонентам в отопительный и неотопительный период.
  • tcs, tc – показатель температуры водопроводной воды в отопительный и неотопительный период. Если данный показатель неизвестен, можно воспользоваться усредненными данными — tcs = 15 °С, tc = 5 °С.

Калькулятор расчета количества секций радиаторов

Информация по назначению калькулятора

К алькулятор радиаторов отопления предназначен для расчета количества секций радиатора, обеспечивающих необходимый тепловой поток, возмещающий теплопотери рассчитываемого помещения и поддержания на заданном уровне температуры, отвечающей условиям теплового комфорта и/или требованиям технологического процесса. Расчет производится с учетом теплопотерь ограждающих конструкций, а также особенностей системы отопления.

В опросы отопления являются основополагающими как для частного хозяйства, так и квартир в многоэтажном доме. Особенно они актуальны для РФ, большая часть территории которой находится в зоне пониженных температур. Для создания оптимальных и благоприятных температурных условий в помещениях разрабатывается множество материалов с усиленными теплоизоляционными свойствами.

К аждый год на рынках появляются высокотехнологичные и эффективные системы теплоснабжения. Но особое внимание всегда уделяется радиаторам, поскольку они являются конечным звеном в отопительной цепи. Отдаваемое ими тепло служит главным критерием работы всей системы теплоснабжения.

Н есмотря на важность роли, которая отведена радиаторам отопления, они остаются самыми консервативными элементами в строительной индустрии. Инновационные нововведения в этой сфере появляются редко, хотя исследователи постоянно работают над совершенствованием конструкций изделий. В современном тепловом обеспечении зданий и сооружений используется 4 основных типов, и данный калькулятор подскажет как рассчитать сколько необходимо радиаторов отопления на 1 м2.

И х классификация предопределяется материалами изготовления, в соответствии с которыми они подразделяются на:

  • Стальные
  • Чугунные
  • Алюминиевые
  • Биметаллические

С тальные радиаторы подразделяются на панельные и трубчатые. Панельные, именуемые также конвекторами, обладают КПД, достигающим 75%. Это высокий показатель эффективной работы всей системы. Другое их достоинство – дешевизна. Панели обладают малой энергетической емкостью, что позволяет снижать расходы теплового носителя. К недостаткам относится низкая стойкость против коррозии после слива воды.

И зделия просты в эксплуатации. По мере необходимости нагревательные панели могут легко наращиваться до 33 штук. Относительно низкая стоимость делает их самыми распространенными продуктами в модельном ряду.

Р оссийские бренды сейчас занимают лидирующие позиции на внутреннем рынке. Импорт зарубежной продукции достаточно дорогой, а российские производители уже наладили выпуск панельных систем радиаторов, которые по качеству не уступают зарубежным аналогам.

Т рубчатые системы радиаторов по конструкции состоят из стальных труб, в которых циркулирует теплоноситель. Данные приборы достаточно технологически сложны для промышленного производства. Это сказывается на цене конечной продукции.

Т рубчатые радиаторы полностью сохраняют все преимущества панельных, но по сравнению с ними имеют более высокое рабочее давление 9-16 бар против 7-10 бар. По показателям тепловой мощности (120 – 1600 Вт) и максимальной температуре нагрева воды (120 градусов) обе модели сопоставимы друг с другом. Если вы не знаете как правильно рассчитать количество радиаторов, воспользуйтесь онлайн калькулятором.

А люминиевые отопительные приборы изготовлены из одноименного материала или его сплавов. Подразделяются они на литые и экструзионные. Эта разновидность чаще всего применяется в системах автономного теплоснабжения в индивидуальных хозяйствах. Для централизованного отопления данный вид не подходит, так как чувствителен к качеству теплоносителя. Они могут быстро выйти из строя, если в воде есть агрессивные примеси и не выдерживают сильных давлений.

Р адиаторы, изготовленные путем литья, отличаются широкими каналами для теплоносителя и упрочненными стенками увеличенной толщины. Имеют несколько секций, число которых можно увеличивать или снижать.

Э кструзионный метод изготовления приборов основан на механическом выдавливании элементов из алюминиевого сплава. Весь процесс относительно дешевый, но конечный продукт имеет цельный вид. Количество секций не подлежит изменению.

А люминиевые радиаторы обладают очень высокой теплоотдачей, быстро нагревают помещение и просты при монтаже, так как имеют небольшой вес. Но алюминий вступает в химические реакции с теплоносителем, поэтому ему требуется хорошо очищенная вода. Слабое место – стыковки секций с трубными соединениями. Со временем возможны протечки. Они не ударопрочные. По давлению, температурному режиму и другим характеристикам коррелируют со стальными радиаторами.

Ч угунные радиаторы являются самым традиционным элементом теплоснабжения. За долгие годы они практически не видоизменялись, но сохранили свою популярность и просты по форме и дизайну. Долговечны, надежны, хорошо держат тепло. Могут долго сопротивляться коррозии и воздействию химических реагентов. По температурному режиму не уступают другим приборам аналогичной комплектации. По давлению и мощности – превосходят, но сложны в установке и транспортировке.

Б иметаллические устройства обычно имеют трубчатый стальной сердечник и алюминиевый корпус. Такие отопительные устройства выдерживают высокое давление. В целом, они отличаются повышенной надежностью и прочностью. При низкой инерционности обладают высокой теплоотдачей и низким расходом воды, не боятся гидравлических ударов. По базовым показателям в 1,5-2 раза превосходят аналогичные устройства. Главный недостаток – высокая цена.

Общие сведения по результатам расчетов

  • К оличество секций радиатора – Расчетное кол-во секций радиатора, с обеспечением необходимого теплового потока для достаточного обогрева помещения при заданных параметрах.
  • К ол-во тепла, необходимое для обогрева – Общие теплопотери помещения с учетом особенностей данного помещения и особенностей функционирования системы отопления.
  • К ол-во тепла, выделяемое радиатором – Общий тепловой поток от всех секций радиатора, выделяемый в помещение при заданной температуре теплоносителя.
  • К ол-во тепла, выделяемое одной секцией – Фактический тепловой поток, выделяемый одной секцией радиатора с учетом особенностей системы отопления.

Калькулятор работает в тестовом режиме.

Расчет отопления

1. Методика расчета сопротивления воздухопроницаемости ограждающей конструкции стены

1.
Определяют удельный вес наружного и
внутреннего воздуха, Н/м2

,
(6.1)

.
(6.2)

2.
Определяют разность давлений воздуха
на наружной и внут­ренней поверхностях
ограждающей конструкции, Па

(6.3)

максимальная
из средних ско­ро­стей ветра по
румбам за январь, м/c,
, (см. табл.1.1).

3. Вычисляют
требуемое сопротивление воздухопроницанию,
м2чПа/кг

, (6.4)

нормативная
воздухопроницаемость ограждающих
кон­струк­ций, м2чПа/кг,
.

4.
Находят общее фактическое сопротивление
воздухопрони­цанию наружного
ограждения, м2чПа/кг

,
(6.5)

сопротивление
воздухопроницанию отдельных слоев
ог­раж­дающей конструкции,
м2чПа/кг
.

Если
выполняется условие
,
то ограждающая конструк­ция отвечает
требованиям воздухопроницаемости, если
условие не вы­полняется, то необходимо
принять меры по увеличению
возду­хопроницаемости.

Расчет
сопротивления воздухопроницаемости

ограждающей конструкции стены

Усредненный расчет и точный

Учитывая описанные факторы, усредненный расчет проводится по следующей схеме. Если на 1 кв. м требуется 100 Вт теплового потока, то помещение в 20 кв. м должно получать 2 000 Вт. Радиатор (популярный биметаллический или алюминиевый) из восьми секций выделяет около 150 Вт. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный выглядит немного устрашающе. На самом деле ничего сложного. Вот формула:

  • q1 – тип остекления (обычное =1.27, двойное = 1.0, тройное = 0.85);
  • q2 – стеновая изоляция (слабая, или отсутствующая = 1.27, стена выложенная в 2 кирпича = 1.0, современна, высокая = 0.85);
  • q3 – соотношение суммарной площади оконных проемов к площади пола (40% = 1.2, 30% = 1.1, 20% — 0.9, 10% = 0.8);
  • q4 – уличная температура (берется минимальное значение: -35 о С = 1.5, -25 о С = 1.3, -20 о С = 1.1, -15 о С = 0.9, -10 о С = 0.7);
  • q5 – число наружных стен в комнате (все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2);
  • q6 – тип расчетного помещения над расчетной комнатой (холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8);
  • q7 – высота потолков (4.5 м = 1.2, 4.0 м = 1.15, 3.5 м = 1.1, 3.0 м = 1.05, 2.5 м = 1.3).

По любому из описанных методов можно провести расчет тепловой нагрузки многоквартирного дома.

3. Методика расчета влияния инфильтрации на температуру внутренней поверхности и коэффициент теплопередачи ограждающей конструкции

1.
Вычисляют количество воздуха, проникающего
через наруж­ное ограждение, кг/(м2ч)

.
(6.7)

2.
Вычисляют температуру внутренней
поверхности ограждения при инфильтрации,
С

,
(6.8)

удельная
теплоемкость воздуха, кДж/(кгС);

основание
натурального логарифма;

термическое
сопротивление теплопередаче ограждающей
конструкции, начиная от наружного
воздуха до данного сечения в толще
ограждения, м2С/Вт:

.
(6.9)

3.
Рассчитывают температуру внутренней
поверхности огражде­ния при отсутствии
конденсации, С

.
(6.10)

4. Определяют
коэффициент теплопередачи ограждения
с уче­том инфильтрации, Вт/(м2С)

.
(6.11)

5.
Вычисляют коэффициент теплопередачи
ограждения при от­сут­ствии
инфильтрации по уравнению (2.6), Вт/(м2С)

.
(6.12)

Расчет
влияния инфильтрации на температуру
внутренней поверхности
и коэффициент
теплопередачи ограждающей конструкции

Исходные
данные

Значения
величин, необходимых для расчета:
Δp= 27,54 Па;tн = –27 С;
tв = 20 С;
Vхол= 4,4 м/с;
= 3,28 м2С/Вт;
е= 2,718;
= 4088,7м2чПа/кг;
Rв = 0,115 м2С/Вт;
СВ = 1,01 кДж/(кгС).

Порядок
расчета

Вычисляют
количество воздуха, проникающего через
наружное ограждение, по уравнению (6.7),
кг/(м2ч)

Вычисляют
температуру внутренней поверхности
ограждения при инфильтрации, С,
и термическое сопротивление теплопередаче
ограждающей конструкции, начиная от
наружного воздуха до дан­ного сечения
в толще ограждения по уравнениям (6.8) и
(6.9).

м2С
/Вт;

С.

Рассчитывают
температуру внутренней поверхности
ограждения при отсутствии конденсации,
С

С.

Из
расчетов следует, что температура
внутренней поверхности при фильтрации
ниже, чем без инфильтрации ()
на 0,1С.

Определяют
коэффициент теплопередачи ограждения
с учетом инфильтрации по уравнению
(6.11), Вт/(м2С)

Вт/(м2С).

Вычисляют
коэффициент теплопередачи ограждения
при от­сут­ствии инфильтрации по
уравнению (2.6), Вт/(м2С)

Вт/(м2С).

Таким
образом, установлено, что коэффициент
теплопередачи с учетом инфильтрации
kибольше
соответствующего коэффициента без
инфильтрацииk(0,308 > 0,305).

Контрольные
вопросы к разделу 6:

1.
Какова основная цель расчета воздушного
режима наружного
ограждения?

2.
Как влияетинфильтрация на температуру
внутренней поверхности
и коэффициент
теплопередачи ограждающей конструкции?

7.
Требования
к расходу тепловой энергии на отопление
и вентиляцию зданий

Инфильтрация расчет объема

Расчет объема инфильтрации.

Чтобы было заметно воздействие кислоты на карбонатные включения, в атмосферных осадках,просачивающихся через зону аэрации, pH должно быть менее 4, что бывает очень редко (в основном на промышленных территориях и не всегда). При этом кислые растворы полностью нейтрализуются в породах зоны аэрации . При этом на поверхность водоносного комплекса площадью I м2 по расчетам будет поступать 6 г 3042″, а прирост концентрации в подземных водах составит всего 4 мг/л. Следовательно, загрязнение подземных вод соединениями серы за счет поступления загрязненных атмосферных осадков из атмосферы незначительно. По объемам стоков, поступающих в подземные воды, и площади их распространения при инфильтрации наибольшее значение имеют утечки условно-чистых техногенных вод на территории ЕСР и ЗЛО и утечки пресных техногенных вод на территории АШЗ. Сточные воды, инфильтруясь через зону аэрации, взаимодействуют с породами. Фильтрационные потери из ЕСР ориентировочно составляют 120-130 тыс. м3/год (или-0,23 ад/год, или 6,ЗЛО-4 м/сут). Значение инфильтрации на ЭДО без учета испарения и транспирации составляет 2,2.10“3м/сут (или 0,77 ад/год).Фильтруясь через зону аэрации,эти растворы меняют свой состав. За счет вымывания гипса из пород увеличивается ионная сила раствора. Кроме того, вначале происходит растворение кальцита, в небольшом количестве содержащегося в породах. Затем, по данным моделирования , из-за нарушения соотношения в растворе ионов Са2+ при растворении гипса будет наблюдаться осавдение доломита. Также при взаимодействии раствора с породами в него будут переходить миграционные формы алюминия (А102 и А1(0Н)4 в основном).

В общем случае защищенность подземных вод оценивается на основе четырех показателей: глубины залегания грунтовых вод или мощности зоны аэрации, строения и литологического состава слагающих пород этой зоны, мощности и распространенности слабопроницаемых отложений над грунтовыми водами и фильтрационных свойств пород над уровнем грунтовых вод. Наибольшее влияние на скорости и объемы инфильтрующихся загрязненных вод оказывают два последних признака, а глубина залегания грунтовых вод имеет подчиненное значение. Поэтому при предварительных оценках категорий защищенности пользуются параметром мощности зоны аэрации и расчетами глубин и скоростей инфильтрации загрязненных вод. При более детальных оценках в расчеты или прогнозные модели вводят такие параметры, как поглощающие, сорбционные свойства пород и соотношения уровней водоносных горизонтов с целью оценки горизонтальных направлений и объема миграции загрязненных вод по латерали. На этом же этапе наряду с природными необходим учет техногенных физико-химических процессов (свойства жидкости).

Расчетную часовую тепловую нагрузку отопления следует принимать по типовым или индивидуальным проектам зданий.

В случае отличия принятого в проекте значения расчетной температуры наружного воздуха для проектирования отопления от действующего нормативного значения для конкретной местности, необходимо произвести пересчет приведенной в проекте расчетной часовой тепловой нагрузки отапливаемого здания по формуле:

где: Qор — расчетная часовая тепловая нагрузка отопления здания, Гкал/ч (ГДж/ч);

tв — расчетная температура воздуха в отапливаемом здании, C; принимается в соответствии с главой СНиП 2.04.05-91 и по табл. 1;

tнро — расчетная температура наружного воздуха для проектирования отопления в местности, где расположено здание, согласно СНиП 2.04.05-91, C;

Таблица 1 РАСЧЕТНАЯ ТЕМПЕРАТУРА ВОЗДУХА В ОТАПЛИВАЕМЫХ ЗДАНИЯХ

Системы отопления

Если мы собираемся по максимуму экономить в той или иной сфере.

Калькулятор расхода сжиженного газа на отопление

Качественное планирование семейного бюджета позволяет свести к минимуму вероятность каких-то локальных.

Никакой серьёзный предприниматель не начнет нового дела, не вникнув в тщательно.

В подавляющем числе случаев основными приборами конечного теплообмена в системах отопления.

Иногда у владельцев домов или квартир, в которых установлено автономное водяное отопление, возникает потребность точно определить общий объем системы. Чаще всего это связано с необходимостью проведения тех или иных профилактических и регламентных работ, в ходе которых придется полностью опорожнить систему.

Многие хозяева загородных домов, начитавшись и наслушавшись о тех преимуществах, которые.

Наличие качественной бани большинством собственников загородных домов воспринимается, как само собой разумеющееся.

Твердотопливные котлы экономичны и незаменимы в ситуациях, когда автономную систему отопления.

Старый добрый чугунный радиатор МС — сколько секций необходимо в комнате

Некоторые системы отопления будут работать намного эффективнее и экономичнее, если постараться.

Продолжаем серию публикаций об экономичности систем отопления загородного жилья, использующих различные.

Поддержание нормальной тяги в дымоходе – одно из основополагающих условий безопасной.

Если устанавливается газовое котельное оборудование (оно по умолчанию не может быть кустарным) или твердотопливный прибор заводской сборки, то обычно проблем с определением сечения дымоходного канала не возникает. У оборудования уже имеется патрубок для подключения трубы, и остаётся лишь этот диаметр.

Чем хорош электрический конвектор отопления настенный, как выбрать оптимальный для себя.

Общедомовой счетчик тепла, в соответствии с действующим законодательством, в настоящее время.

Иногда обстоятельства складываются таким образом, что единственным приемлемым вариантом организации полноценного.

Газовое отопление считается лидером по удобству в эксплуатации и экономичности. Поэтому неудивительно, что при появлении такой возможности хозяева загородных домов выбирает именно его. Наметилась устойчивая тенденция и к тому, что владельцы городских квартир также стараются получить полную «автономию» от теплоснабжающих.

Воздушное отопление жилых домов не имеет столь широкого распространения, как «классическое».

Традиционными приборами теплообмена, устанавливаемыми в жилых помещениях, являются радиаторы отопления. Однако.

Если в доме оборудуется водяное отопление с использованием технологии подогрева поверхности полов.

Многие владельцы частных домов мечтают о камине – этом олицетворении особого.

Одним из основных аксессуаров любой бани является печь. Чаще всего в.

Калькулятор расчета краски для чугунного радиатора отопления

Электрический обогрев помещений всегда может прийти на помощь основной системе отопления.

Любая печь или котел, работающие на твердом топливе, должны иметь надёжный дымоход.

Несмотря на широкий ассортимент современных теплообменных приборов отопления, привычные всем чугунные.

Многие современные модели газовых котлов оснащены достаточно сложной системой электронного управления.

Наличие загородного участка очень часто предполагает ведение на нем тех или.

Дровяные печи, даже при нынешнем разнообразии котельного оборудования, не теряют своей.

Гидравлический разделитель или, иначе, гидрострелка системы отопления – простой по конструкции, но.

Сложная, разветвленная система отопления, особенно с несколькими контурами, в каждом из.

Калькулятор расчета объема расширительного бака для системы отопления

Чтобы система отопления с принудительной циркуляцией работала с требуемой эффективностью, необходимо.

Система отопления с принудительной циркуляцией по всем позициям превосходит схему с.

Водяное отопление с газовым котлом можно справедливо отнести к наиболее эффективным.

показанно 36 из 39

Расчет системы отопления – это очень важный этап, от которого во многом зависит последующий комфорт и удобство проживания в доме. Мы подготовили для вас десятки бесплатных онлайн-калькуляторов, которые облегчат расчеты, и все они собраны в рубрике «Система отопления»! Но для начала выясним, как вообще рассчитывается отопительная система?

Этап №1. Вначале рассчитываются теплопотери здания – эти сведения необходимы для того, чтобы определить мощность отопительного котла и каждого из радиаторов в частности. В этом вам поможет наш калькулятор теплопотерь! Что характерно, их следует рассчитывать для каждого помещения, в котором имеется наружная стена.

Этап №2. Далее нужно выбрать температурный режим. В среднем, для расчетов используется значение 75/65/20, что полностью соответствует требованиям EN 442. Если выберите именно этот режим, то уж точно не ошибетесь, ведь на него настроена большая часть всех импортных отопительных котлов.

Этап №3. После этого подбирается мощность радиаторов с учетом полученных теплопотерь в помещении. Также вам может пригодиться бесплатный калькулятор расчета количества секций радиатора отопления.

Этап №4. Для подбора подходящего циркуляционного насоса и труб нужного диаметра производится гидравлический расчет. Чтобы выполнить его, нужны специальные знания и соответствующие таблицы. Также можно воспользоваться калькулятором расчета производительности циркуляционного насоса.

Этап №5. Теперь нужно выбрать котел. Детальнее о выборе отопительного котла можно узнать из статей данной рубрики нашего сайта.

Этап №6. В конце необходимо рассчитать объем системы отопления. Ведь именно от вместительности сети будет зависеть объем расширительного бака. Здесь вам поможет калькулятор расчета общего объема системы отопления.

На заметку! Эти, а также многие другие онлайн-калькуляторы можно найти в данной рубрике сайта. Воспользуйтесь ими, чтобы максимально облегчить рабочий процесс!

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: