Пластинчатый теплообменник: принцип работы и конструкция прибора

Что такое пластинчатые теплообменники

Теплообменник — техническое устройство, в котором осуществляется теплообмен между двумя средами , имеющими различные температуры, причем эти среды, холодные и горячие, никогда не встречаются и не смешиваются между собой. Среды могут быть любыми, такими как пар, вода, масло, хладагент и т. д.

Основные виды, которые вы можете встретить:

  • Пластинчатый теплообменник
  • Кожухотрубчатый (кожухотрубный) теплообменник
  • Двухтрубный теплообменник вида «труба в трубе»

В этой статье подробно поговорим о пластинчатых теплообменниках, рассмотрим конструкцию, область применения и принцип работы.

Первоначальная идея пластинчатых теплообменников была запатентована во второй половине 19 века, а первая известная конструкция была представлена в 1923 году доктором Ричардом Селигманом, главой компании Aluminium Plant and Vessel Company Ltd.(Алюминиевый завод и Судостроительная компания) известной сегодня как APV. Самый первый пластинчатый и рамный теплообменник был сконструирован из литых пластин из пушечной бронзы и заключен в раму, которая установила стандарт для современных компьютерных тонких металлических пластинчатых теплообменников, известных во всем мире. Базовая конструкция осталась неизменной, но постоянные усовершенствования позволили повысить рабочее давление в современных машинах с 1 до 25 атмосфер

Пластинчатые теплообменники применяются в различных сферах, включая: пищевую и химическую промышленность, системы нагрева технических и пищевых жидкостей, охлаждение промышленного оборудования, для подключения зданий к сетям централизованного отопления и охлаждения.

Особенно широко используются в пищевой промышленности, поскольку они компактны и могут быть изготовлены в различных видах и легко чистятся. Осаждение материалов на горячих поверхностях (загрязнение) снижает тепловые и гидродинамические характеристики, требует периодической очистки (часто всего через несколько часов работы).

Многие промышленные предприятия используют пластинчатые теплообменники для таких целей, как пастеризация и утилизация отходящего тепла. Например, производственное предприятие может использовать воду для охлаждения горячего, недавно произведенного напитка. Горячий готовый жидкий продукт необходимо охладить перед розливом в бутылки, чтобы он прошел через пластинчатый теплообменник, подключенный к охлаждающему контуру чиллера(водоохлаждающая машина). Это отводит нежелательное тепло без смешивания двух жидкостей.

Пластинчатый теплообменник состоит из нескольких листов тонкого гофрированного металла (пакет пластин), образующих каналы. Прокладки находятся между пластинами и образуют уплотнение. Уплотнение предотвращает смешивание и утечку жидкостей, но они также определяют, по каким каналам может протекать каждая жидкость.

Пластинчатые теплообменники могут увеличивать или уменьшать свою нагревательную или охлаждающую способность за счет добавления или удаления внутренних пластин. Их также можно разобрать для очистки и обслуживания, кроме неразборных.

Эти аппараты могут быть :

  • разборными
  • полуразборными-
  • неразборными (сварными или паяными).

В разборных теплообменниках теплопередача состоит из ряда гофрированных пластин, установленных между рамой и прижимными пластинами, которые сохраняют расчетное давление. Для достижения наивысших тепловых характеристик и обеспечения очень близкого температурного приближения жидкости обычно проходят через теплообменник противотоком.

Полуразборные теплообменники используются, когда прокладки не подходят в качестве одной из технологических сред, а также могут выдерживать более высокое расчетное давление по сравнению с полностью разборными пластинчатыми теплообменниками. Уплотнение между пластинами на промышленной полусварной линии чередуется между лазерной сваркой и прокладками. Канал, сваренный лазерной сваркой, позволяет использовать жидкости, несовместимые с обычными прокладками, а также обеспечивает более высокое расчетное давление, чем полностью разборные пластинчатые теплообменники.

Неразборные теплообменники не имеют не имеют открытых прокладок, это цельносварной пластинчатый теплообменник, который используется, прежде всего, в нефтегазовой, химической и нефтехимической промышленности. Рама, прочно закрепленная на болтах, состоит из четырех колонн, верхней и нижней частей, а также четырех боковых панелей. Используются для решения сложных задач, связанных с агрессивными средами, экстремальными температурами и высоким давлением.

Основным недостатком этих теплообменников является то, что они не снимаются, поэтому техническое обслуживание и очистка невозможны или, по крайней мере, трудны, а количество пластин поменять нельзя, но зато гораздо меньше подвержены загрязнению и засорению и требуют лишь периодического осмотра и очистки.

Отметим такую тонкость: Поверхность пластин гофрирована для увеличения турбулентности жидкости во время перетекания в каналы.

На рисунке показаны основные параметры гофры:

Шаг гофры р ; угол шеврона β по сравнению с основным направлением потока.

Угол наклона гофрированного рисунка влияет на теплообмен и производительность:

  • Угол пластин β > 45 ° дает более высокий теплообмен с высоким давлением.
  • Угол пластин β

1. Требуемое пространство и вес меньше по сравнению с другими теплообменниками.

2. Благодаря модульной конструкции плит монтаж и установка могут быть выполнены быстро.

3. Коэффициенты теплоотдачи выше.

4. Тепловая инерция ниже , что дает более быструю реакцию и способствует точному контролю температуры.

5. Быстрая и легкая разборка для очистки и контроля.

6. Адаптация к изменяющимся условиям эксплуатации путем добавления или удаления нагревательных пластин для изменения установленного теплового потока.

Самым большим преимуществом пластинчатых теплообменников по сравнению с другими теплообменниками является их эффективность теплопередачи. Пластины, разделяющие две жидкости, тоньше по сравнению с другими материалами. Это увеличивает скорость передачи тепла и, таким образом, снижает тепловые потери, которые могут возникнуть во время передачи.

Обменники бесценны благодаря этим функциям, которые увеличивают срок службы системы. Пластинчатые теплообменники могут выполнять множество функций, таких как нагревательный элемент, охлаждающий элемент, автоматический включатель или выключатель давления.

1. Часто механическая очистка не является предпочтительной, так как прокладки и пластины легко повреждаются в процессе очистки. Химическая очистка необходима.

2. Прокладки необходимо время от времени заменять, а это дорогостоящий элемент обслуживания.

3. Небольшие отверстия между пластинами склонны к забиванию посторонними частицами. Поэтому в процессе эксплуатации необходимо периодическое реверсирование потока. По некоторым свойствам жидкости обратный поток требуется часто. Так что это может повлиять на поток процесса.

Читайте также:
Рабочее место для ученика: основные правила его организации

Еще к недостаткам можно отнести, скорей не к недостаткам, а к неудобству это то что, при эксплуатации пластинчатых теплообменников, в 95 % случаев собственный персонал не имеет нужной квалификации и ничего не может поделать с чисткой, сборкой-разборкой и заменой прокладок на данном типе теплообменников, часто этот не квалифицированный персонал при замене уплотнений и промывке используют металлические щетки, чтобы сократить время мойки пластин. А это приводит к более быстрому износу и последующему прогоранию пластин.

Почти всегда приходится нанимать специализированную организацию для качественной работы или замены прокладок, поэтому необходимо оценивать состав своей ремонтной службы либо последующую готовность нести затраты на обслуживание пластинчатого теплообменника.

В славном городе Челябинске находится один из наших ключевых партнеров. Их главным преимуществом является собственное производство пластинчатых теплообменников с 2008г. Эти ребята знают про них все.

Они является сертифицированным сборочным производством и официальными дилерами немецких теплообменников Funke.Также они представляют другие бренды из Турции и Швеции.

Благодаря их большому ассортименту различных пластин, компания Квип может осуществлять ремонт теплообменников других производителей своими силами! Для того чтобы разобраться в проблеме от вас нужна спецификация вашего теплообменника.

Также есть возможность подобрать на замену те пластины и уплотнения, которые есть у заказчика.

Если проблема более серьезная, то потребуется демонтаж теплообменника и отправка его в Челябинск для диагностики и ремонта. Но это в любом случае намного дешевле, чем отправка за границу или покупка нового и это несомненно еще один плюс.

Мы регулируем пар, который подается в теплообменник.

Мы можем подобрать клапан для регулировки, шкаф, датчики и вообще собрать всю обвязку для осуществления правильной регулировки.

Не самая приятная история, но что есть, то есть. Эта история еще и связана с работой конденсатоотводчика. Мы отгрузили оборудование на один из молочных заводов Свердловской области, запустили процесс, через один теплообменник они грели воду и моющие растворы, а на другом узле молоко. Давление подающего пара в этих теплообменниках было рассчитано на 3 Бар.

В редукционном узле не был подключен клапан RP45, из-за этого давление в теплообменнике давило 5-6 Бар, как с котельной поступает, так и распределяется дальше без изменений. Максимальная эксплуатация уплотнений теплообменника 150°С, а 5-6 Бар это почти 160°С температура пара, что негативно влияет на сами уплотнения, они пересыхают, трескаются и начинается смешивание жидкостей внутри. Если вода попадает в пар это еще терпимая ситуация, а в этом случае смешивались моющие средства и продукт(молоко), происходило закисление конденсата, это в свою очередь начало разрушать и пластины, в них стали появляться “свищи”, сначала маленькие и незаметные, а потом уже прямо очень заметные. А это уже потеря потерь не только по теплу, но и по продукту.

Стали менять оборудование на конденсатной линии и добавилась проблема невозможности использования конденсата повторно. А это возможность экономии на нагреве, на водоподготовке конденсата, а по нашим расчетам это экономия до 1 миллиона рублей в месяц.

Начались упреки в нашу сторону, что мы отгрузили бракованные конденсатоотводчики. Мы конечно очень переволновались, т.к за свою продукцию отвечаем головой и уверены в ее качестве на все 100%. Собрали мощную доказательную базу, что наши конденсатоотводчики не при чем, а все дело в клапане!

Недоразумение было улажено, вопрос решился хорошо, инженеры завода все поправили, а мы и дальше сотрудничаем в мире и согласии.

Вторая история нам покажет, что внимательность и упорство дает свои плоды)

Один из наших сотрудников в годы своей юности работал на молочном заводе столкнулся со следующей ситуацией: пришло время технического обслуживания пастеризационно-охладительной установки ОКЛ-10, оно производится через определенные часы наработки. В этом теплообменнике около 250 пластин и они разбиты по секциям: подогрев, пастеризация, нормализация молока. При ослаблении резьбы на раме пластины можно растянуть, достать и помыть, что они благополучно и сделали. Сложности начались позже…., 200 с лишним пластин и у каждой свой вход/выход, собрали и ничего не работает. Надо искать ошибку, где-то неправильно установили пластину.

В итоге, чтобы разобраться и найти ошибку 3 человека потратили 2 дня, собирали в различных вариациях, сравнивали со схемой, нарисованной кем-то от руки в единственном экземпляре на весь завод, запускали и так по кругу, пока не нашли.

Вот схема ниже на фото, представляете, какая работа была проделана?

Прочитав эту статью до конца, мы надеемся, что вы узнали про пластинчатый теплообменник чуть больше.

Подписывайтесь на наш канал Телеграм, там всегда много полезного и интересного.

Принцип работы пластинчатого теплообменника

Устройство и принцип работы пластинчатого теплообменника

Пластинчатый теплообменник является новым и универсальным прибором для обогрева и охлаждения помещений.

Как протекают процессы в пластинчатом теплообменнике

Пластины разборного пластинчатого теплообменника устанавливаются одна за другой с поворотом на 180 ° .

Эта компоновка создает теплообменный пакет с четырьмя коллекторами для подвода и отвода жидкостей.

Первая и последняя пластины не участвуют в процессе теплообмена, задняя пластина выполняется обычно без портов.

На схеме представлен пластинчатый теплообменник для отопления самой простой конструкции с патрубками, расположенными по разные стороны агрегата.

1, 11 – подающий и обратный патрубки для подключения греющей среды (теплоносителя); 2, 12 – входной и выходной патрубки нагреваемой среды; 3 — передняя неподвижная плита; 4, 14 – отверстия для протока теплоносителя; 5 – малая уплотнительная прокладка в виде кольца; 6 – рабочая теплообменная пластина; 7 – верхняя направляющая; 8 – задняя подвижная плита; 9 – задняя опора; 10 – шпилька; 13 – большая прокладка по контуру пластины; 15 – нижняя направляющая.

Читайте также:
Прочистка канализации в частном доме — как промыть трубы, способы

Во время работы в каждой секции, кроме первой и последней, происходит интенсивный обмен теплом через пластины сразу с двух сторон.

Обе среды протекают через свои секции навстречу друг другу, нагревающая подается сверху и выходит через нижний патрубок, а нагреваемая – наоборот.

Как это работает, отображает функциональная схема пластинчатого теплообменника:

Особенности конструкции

Пластинчатый теплообменник состоит из следующих элементов:

  • Передней неподвижной плиты с патрубками. Через последние в теплообменник попадают обе рабочие среды.
  • Верхней и нижней направляющих штанг. Эти элементы необходимы для придания жесткости всей конструкции. Ту же функцию выполняет задняя опора устройства.
  • Задней подвижной плиты.
  • Самих пластин.
  • Уплотнительных прокладок, служащих одновременно разграничителями между пластинами.

Современный пластинчатый теплообменник: принцип работы

Функционирует устройство этого типа по перекрестной схеме.

Секции поочередно заполняются нагреваемой и охлаждаемой средой.

Теплообмен между ними происходит через пластины.

Заполнение секций в процессе работы устройства обеспечивают прокладки-уплотнители разной формы.

Последние могут или пропускать среду, или задерживать ее. Теплообменники пластинчатые устроены так, что среды в них перемещаются навстречу друг другу. При этом нагревающая подается сверху и выходит в нижний патрубок, а охлаждаемая, соответственно, наоборот.

Таким образом функционируют все подобные устройства. Принцип работы пластинчатого теплообменника для ГВС точно такой же, как у моделей, предназначенных для кондиционирования, охлаждения смазочных материалов и проч. Единственное отличие состоит в проходящих через корпус видах сред. В модели для ГВС — это, соответственно, вода, в других устройствах такого типа обмен может происходить между растворами, маслами, газами и т. д.

Уплотнители теплообменников

От качества этих элементов зависит долговечность и надежность теплообменника.

Уплотнители предотвращают смешивание сред и направляют их по определенной траектории.

На настоящий момент в теплообменниках используется всего две разновидности подобных элементов: клипсовые и клеевые. Для изготовления уплотнителей обычно применяются материалы на основе каучука. Это могут быть, к примеру, EPDM, ПВР, витон и т. д.

Клеевые уплотнители крепятся в специальных канавках на эпоксидку. Клипсовые варианты устанавливаются посредством специальных фиксирующих элементов.

Сфера применения

Пластинчатый теплообменник может использоваться:

  1. На механическом производстве. С применением таких устройств охлаждаются смазочные жидкости, гидравлические и трансмиссионные масла и т. д.
  2. В поршневых и турбинных двигателях.
  3. В энергетических станциях.
  4. В компрессорах.
  5. В судоходстве. На судах теплообменники применяют в основном для центрального охлаждения.
  6. В легкой промышленности.
  7. В машиностроении и металлообработке.
  8. В системах отопления и кондиционирования.

Виды теплообменных аппаратов

Теплообменные аппараты подразделяются на несколько групп в зависимости от:

  • типа взаимодействия сред (поверхностные и смесительные);
  • типа передачи тепла (рекуперативные и регенеративные);
  • типа конструкции;
  • направления движения теплоносителя и теплопотребителя (одноходовые и многоходовые).

Наиболее наглядно классификация теплообменных аппаратов представлена на следующем изображении:

Рис. 1. Виды устройств теплообменников в зависимости от принципа работы

По типу взаимодействия сред

Поверхностные

Теплообменные аппараты данного вида подразумевают, что среды (теплоноситель и теплопотребитель) между собой не смешиваются, а теплопередача происходит через контактную поверхность – пластины в пластинчатых теплообменниках или трубки в кожухотрубных.

Смесительные

Кроме поверхностных теплообменников используются агрегаты, в основе эксплуатации которых лежит непосредственный контакт двух веществ.

Наиболее известным вариантом смесительных теплообменников являются градирни:

Рис. 2. Градирни – один из видов смесительных ТО

Градирни используются в промышленности для охлаждения больших объемов жидкости (воды) направленным потоком воздуха.

К смесительным теплообменникам относятся:

  • паровые барботеры;
  • сопловые подогреватели;
  • градирни;
  • барометрические конденсаторы.

По типу передачи тепла

Рекуперативные

В данном виде устройств теплопередача происходит непрерывно через контактную поверхность. Примером такого теплообменного аппарата является .

Регенеративные

Отличаются от рекуператоров тем, что движение теплоносителя и теплопотребителя имеют периодический характер. Основная область применения таких установок – охлаждение и нагрев воздушных масс.

Установки с подобным типом действия нужны в многоэтажных офисных зданиях, когда теплый отработанный воздух выходит из здания, но его энергию передают свежему входящему потоку.

Рис. 3. Регенеративный теплообменник

На изображении видно, как в теплообменник поступают 2 потока: горячий (I) и холодный (II). Проходя через коллектор 1 горячая среда нагревает гофрированную ленту, свернутую в спираль. В это время через коллектор 3 проходит холодный поток.

Спустя какое-то время (от нескольких минут до нескольких часов), когда коллектор 1 заберет достаточное количество тепла (точное время зависит от тех. процесса), крыльчатки 2 и 4 поворачиваются.

Таким образом изменяется направление потоков I и II. Теперь холодный поток идет через коллектор 1 и забирает тепло.

По типу конструкции

Вариаций конструкций теплообменных аппаратов очень много. Их выбор и подбор конкретной модели зависит от большого количества условий эксплуатации и технических характеристик:

  • мощность теплообменника;
  • давление в системе;
  • тип сред (агрессивные или нет);
  • рабочие температуры;
  • прочие требования.

Конструкция теплообменных пластин

Главная деталь в пластинчатом теплообменном оборудовании – пластины для передачи тепла. Их изготавливают холодной штамповкой из стойких к окислению материалов. Толщина теплопередающей пластины составляет от 0,4 до 1 мм.

Собранный теплообменный пакет состоит из плотно прилегающих друг к другу пластин, образующих каналы в виде щелей. Лицевые стороны пластин имеют углубление по контуру под резиновую прокладку. Благодаря им пластины герметично прилегают друг к другу.

В каждой пластине имеется четыре отверстия для жидкости:

  • два отверстия для горячей жидкости (подведение и отвод);
  • два отверстия для улучшения точного прилегания пластин. В них установлены уплотнители меньшего размера, чтобы изолировать среды с разными температурами.

Протекание жидкости в пластинчатом теплообменники выполнено так, чтобы происходило завихрение течений. Все это способствует более интенсивному теплообмену с относительно малым сопротивлением протекания жидкости. А при небольшом сопротивлении потоку менее интенсивно накипают отложения на стенки аппарата.

Читайте также:
Смесь для стяжки пола

Петлевидные потоки жидкости вдоль пластин могут неоднократно производить обмен тепла. Благодаря этому даже при большой разнице нагреваемой среды и источника тепла достигается качественный теплообмен. В итоге разница в температуре двух сред минимальна. Для многократного теплообмена выводят патрубки в прижимной плите, а не только в неподвижной.

Рис. 4. Устройство РПТО

Схема

По схеме работы теплообменники делят на две разновидности:

  • одноходовые;
  • многоходовые.

Одноходовый теплообменник устроен так, что каждая среда протекает через щелевые каналы один раз.

После этого жидкость поступает в сборный коллектор и оттуда — в трубопровод.

При таком исполнении все присоединительные патрубки находятся с одной стороны устройства — на неподвижной плите. Подвижную плиту можно двигать как угодно, так что разбирать теплообменник для обслуживания и ремонта ничто не мешает.

Многоходовая схема применяется в тех случаях, когда в греющей среде после одного прохода остается еще много тепла.

Такое наблюдается в следующих случаях:

  • пластины имеют маленькую площадь либо в кассете их установлено малое количество;
  • расходы двух сред очень сильно отличаются;
  • разность температур греющей и нагреваемой среды невелика, поэтому теплообмен протекает с низкой интенсивностью.

В кассету многоходового пластинчатого теплообменника добавляются пластины только с двумя портами, расположенными с одной стороны. Благодаря этому, каждая среда протекает по каналам два раза или более, так что нагреваемая среда усваивает от греющей намного больше тепла, чем при одноходовой схеме.

Преимущества

  • возможность монтажа и демонтажа устройства непосредственно на месте, где будет эксплуатироваться пластинчатый теплообменник;
  • установка в тепловых системах без должной водоподготовки;
  • незначительный вес;
  • возможность быстро и легко изменять тепловую мощность путём дополнительной установки пластин;
  • гибкая регулировка температурного режима в системе.

Основные особенности конструкции

Для изготовления пластин применяются сплавы, характеризующиеся стойкостью к образованию коррозии. Это обеспечивает им должный уровень надежности и гарантирует долговечность.

В собранном виде теплообменник отличается довольно плотным размещением пластин. Благодаря этому образовываются щелевые каналы. Их герметичность достигается за счет применения дополнительных контурных прокладок из резины.

На всех пластинах присутствуют отверстия в количестве четырех штук. Два из них обеспечивают нагревание сред. Оставшаяся пара изолируется. Данная мера исключает недопустимое смешивание жидкостей.

Особенностью работы пластинчатых теплообменников являются довольно небольшие гидравлические сопротивления. Кроме того, следует отметить тот факт, что на поверхности пластин практически не образуется накипь.

При условии размещения дополнительных патрубков на прижимной плите, реализуется возможность осуществления многократного теплообмена сред. Подобный подход актуален в ситуациях, когда речь идет о незначительной разнице в температуре двух сред, а также при условии ощутимого отличия в их расходе.

Оборудование для промывки теплообменников

Принцип работы теплообменника

Во время осуществления теплообмена движение жидкостей происходит по направлению друг к другу. Наличие специального элемента из стали или дополнительного резинового уплотнения позволяет предотвратить смешение жидкостей в тех местах, где существует возможность протекания.

В зависимости от того, в каких именно условиях планируется эксплуатация конкретного теплообменника, количество пластин, а также способ обработки их поверхности, могут отличаться. Это относится и к применяемым расходным материалам.

Так, производители предлагают не только изделия из доступной нержавеющей стали, но и модели, выполненные из современных сплавов, устойчивые к длительному воздействию агрессивных сред.

Пластинчатые теплообменники: принцип работы, устройство, сферы и особенности применения

Надежные, безопасные и простые в обслуживании пластинчатые теплообменники приходят на смену устаревшим кожухотрубным агрегатам. Они лучше справляются с передачей энергии от первичного контура к вторичному и отлично выдерживают колебания давлений. Устройства имеют гораздо меньшие габариты и работают быстрее.

В этой статье мы детально рассмотрим конструкцию пластинчатого теплообменника, принцип работы оборудования, сферы применения и особенности эксплуатации этих высокопроизводительных агрегатов.

Устройство пластинчатого теплообменника. Выгодные отличия от кожухотрубных конструкций. Особенности элементов

Эффективность работы кожухотрубных агрегатов увеличивается за счет наращивания длины змеевика. При этом даже крупногабаритные установки во многих случаях не могут обеспечить нужный уровень расхода нагреваемой среды.

С пластинчатыми теплообменниками дело обстоит иначе. Площадь передачи энергии регулируется путем добавления и удаления пластин одинаковых размеров. Устройства с меньшими габаритами гораздо лучше справляются со своими задачами и обеспечивают большой расход нагреваемой жидкости. Это, к примеру, особенно важно для нужд ГВС.

Рассмотрим конструктивные особенности и принцип работы пластинчатых теплообменников более подробно.

Схема типового пластинчатого теплообменника

На размещенной ниже схеме представлен агрегат самой простой конструкции.

В состав типового теплообменника входят следующие элементы:

  • патрубки (подающий и обратный) для подключения первичного контура — 1, 11;
  • передняя (неподвижная) и задняя (подвижная) плиты — 3, 8;
  • патрубки (входной и выходной) для подключения вторичного контура — 2, 12;
  • отверстия для протока теплоносителя — 4, 14;
  • рабочая пластина — 6;
  • малая уплотнительная прокладка (кольцо) — 5;
  • направляющие (верхняя и нижняя) — 7, 15;
  • задняя опора — 9;
  • шпилька — 10;
  • большая прокладка, расположенная по контуру пластины — 13.

На каждой плите выполнено рельефное гофрирование. Это увеличивает поверхность теплообмена. Элементы располагаются под углом в 180° по отношению друг к другу.

Патрубки могут находиться как с обеих сторон аппарата, так и с одной. Принцип работы пластинчатого теплообменника от этого не меняется.

Особенности изготовления теплообменных пластин

На производство пластин для теплообменников идет нержавеющая сталь. Она отлично сопротивляется воздействиям высоких температур и некачественных сред. Основные элементы теплообменников получают методом штамповки. Только этим способом можно изготовить гофрированную плиту с сохранением ключевых характеристик металла. Для выпуска пластин подойдет не каждая нержавеющая сталь. Производители используют специальные марки (к примеру, 08Х18Н10Т).

Читайте также:
Перегородка в бане

Для получения рельефной поверхности применяют технологию Off-Set. В результате на изделиях появляются канавки, которые могут располагаться симметрично или нет. Рельеф увеличивает площадь соприкосновения пластин с теплоносителем и нагреваемой средой и служит для равномерного распределения жидкостей.

Производители применяют два вида рифления для выпуска теплообменных плит.

  1. Термически жесткое. Канавки расположены под углом в 30°. Пластины с жестким рифлением имеют максимальную теплопроводность, но не выдерживают высокое давления со стороны циркулирующего теплоносителя.
  2. Термически мягкое. Канавки расположены под углом в 60°. Такие плиты, наоборот, выдерживают высокое давление, но отличаются низкой теплопроводностью.

Комбинируя пластины различных типов, вы сможете создать теплообменник с наиболее оптимальным коэффициентом полезного действия. При этом следует учесть тот факт, что для эффективной работы аппарат должен функционировать в турбулентном режиме. Необходимо добиться того, чтобы при высокой теплоотдаче жидкость по каналам текла без затруднений.

Особенности изготовления и крепления прокладок

Для получения максимальной герметичности прокладки для теплообменников изготавливают из различных полимерных материалов. Применяют EPDM (этиленпропилен) и резину NBR. Материалы выдерживают разные нагрузки. Диапазон рабочих температур этиленпропилена — от -30 до + 170 °C. Максимальный предел NBR — +110 °С.

Прокладки крепят к пластинам при помощи клипс и клеевых составов. Первый способ применяют гораздо чаще.

Центровка прокладок по направляющим происходит в автоматическом режиме. В процессе установки пластин не приходится ничего поддерживать и подталкивать. Окантовка манжеты создает надежный барьер, исключающий возможность утечки теплоносителя.

Принцип работы скоростного пластинчатого теплообменника

Принцип работы пластинчатого теплообменника заключается в следующем. Пространство между пластинами заполняется попеременно нагреваемой средой и теплоносителем. Очередность регулируют прокладки. В одной секции они открывают путь теплоносителю, а в другой — нагреваемой среде.

В процессе работы скоростного пластинчатого теплообменника интенсивная передача энергии происходит во всех секциях, кроме первой и последней. Жидкости движутся навстречу друг другу. Теплоноситель подается сверху, а холодная среда — снизу. Визуально принцип работы пластинчатого теплообменника представлен на размещенной ниже схеме.

Как видите, все довольно просто. Чем больше пластин, тем лучше. По этому принципу наращивают эффективность пластинчатых теплообменников.

Классификация пластинчатых теплообменников по принципу работы и конструкции

По принципу работы пластинчатые теплообменники разделяют на три категории.

    Одноходовые конструкции. Теплоноситель циркулирует в одном и том же направлении по всей площади системы. Основа принципа работы оборудования — противоток жидкостей.

  • Многоходовые агрегаты. Их используют в тех случаях, когда разница между температурами жидкостей не слишком высока. Теплоноситель и нагреваемая среда движутся в разных направлениях.
  • Двухконтурное оборудование. Считается самым эффективным. Такие теплообменники состоят из двух независимых контуров, находящихся по обеим сторонам изделий. Отрегулировав мощность секций должным образом, вы быстро добьетесь нужных результатов.

    Производители выпускают разборные и паяные пластинчатые теплообменники.

    • Изделия первой группы пользуются большей популярностью. Такие агрегаты применяют в промышленности и системах ГВС. Разборные модели просты в обслуживании и ремонте. Мощность оборудования регулируется.
    • В паяных теплообменниках пластины жестко соединены между собой и помещены в неразборный корпус.

    Резиновые прокладки отсутствуют. Такие модели чаще всего применяют для нагрева или охлаждения воды в частных домах.

    Выбор пластинчатых теплообменников по техническим характеристикам

    В процессе выбора теплообменника обратите внимание на:

    • нужную температуру нагрева жидкости;
    • максимальную температуру теплоносителя;
    • давление;
    • расход теплоносителя;
    • необходимый расход нагреваемой жидкости.

    Производители выпускают оборудование с различными техническими характеристиками. К примеру, продукция популярного бренда «Альфа Лаваль» имеет следующие параметры.

    Специализированное программное обеспечение и услуги специалистов упрощают задачу поиска. Обычно агрегаты конфигурируют для получения на выходе жидкости с температурой 70 °C.

    Сферы применения

    Надежные и эффективные пластинчатые теплообменники применяют в различных сферах.

    1. Нефтедобывающая промышленность. Оборудование используют для охлаждения перерабатываемых энергоресурсов.
    2. Системы отопления и ГВС. Установки нагревают подаваемые потребителям жидкости.
    3. Машиностроение и металлургия. Оборудование применяют для охлаждения станков и техники.
    4. Пищевая промышленность. Теплообменники, к примеру, входят в состав пастеризационных установок.
    5. Судостроение. Приборы охлаждают различное оборудование и нагревают морскую воду на кораблях.

    Это лишь малая часть сферы применения теплообменников. Оборудование также используют в автомобилестроении, при производстве кислот и щелочей и в других отраслях промышленности.

    Установка и подключение пластинчатых теплообменников

    Небольшие габариты значительно упрощают процесс введения в эксплуатацию пластинчатых теплообменников. Только установка мощных агрегатов потребует сооружения фундаментов. В большинстве случаев будет достаточно болтового крепления. Присоединенные трубы придадут конструкции дополнительную жесткость.

    Простейшая схема подключения теплообменника выглядит следующим образом.

    Если в системе присутствует магистраль обратной циркуляции, схема подключения будет выглядеть так.

    К холодной воде подмешивается жидкость, идущая по замкнутому контуру ГВС. Электронный блок регулирует параметры работы оборудования.

    Двухступенчатое подключение выглядит так.

    Этот способ позволяет сэкономить. Имеющееся тепловая энергия используется по максимуму. Снимается лишняя нагрузка с котлов.

    Пластинчатые теплообменники

    Купить пластинчатые теплообменники. Изготовление, сборка, тестирование и испытание пластинчатых теплообменников
    производится на заводах в Швейцарии, Германии, Франции, Турции, США, Японии и Кореи

    Компания в России Интех ГмбХ / LLC Intech GmbH на рынке инжиниринговых услуг с 1997 года, официальный дистрибьютор различных производителей промышленного оборудования, предлагает Вашему вниманию пластинчатые теплообменники.

    Пластинчатые теплообменники: описание, назначение и принцип действия

    Пластинчатый теплообменник предназначен для переноса тепла между различными средами, причем парами рабочих сред могут служить как пар-жидкость, так и жидкость-жидкость.

    Теплопередающей поверхностью служат тонкие штампованные гофрированные пластины.

    Теплоносители движутся в теплообменнике между соседними пластинами по щелевым каналам сложной формы. Каналы для теплоносителя, отдающего и принимающего тепло, следуют друг за другом, чередуясь.

    Тонкие гофрированные пластины имеют небольшое термическое сопротивление и, кроме того, обеспечивают турбулентность потока теплоносителя, в связи с чем теплообменники такого типа обладают высокой эффективностью теплопередачи.

    Герметичность каналов, по которым движутся теплоносители, и их распределение по каналам обеспечивается резиновыми уплотнителями, расположенными по периметру пластины.

    Одно из этих уплотнений охватывает два отверстия по углам пластины, через которые теплоноситель входит в канал между пластинами и выходит из него. Поток встречного теплоносителя проходит транзитом через другие два отверстия, которые дополнительно изолированы кольцевыми уплотнениями. Герметичность каналов обеспечивается двойным уплотнением вокруг входных и выходных отверстий. В случае повреждения уплотнения теплоноситель вытекает наружу через специальные канавки (на рисунке показаны стрелками). Это помогает определить нарушение герметичности визуально и быстро заменить уплотнение.

    Схема движения и распределения потока теплоносителей по каналу

    В теплообменнике после сборки пластины стягиваются болтами до требуемого размера, при этом уплотнительные резиновые прокладки образуют системы изолированных друг от друга герметичных каналов – для греющего и нагреваемого теплоносителя. Каждая последующая пластина развернута относительно предыдущей на 180 градусов, что, создавая условия для турбулентного движения жидкости, повышает эффективность теплообмена, и одновременно служит для обеспечения жесткости пакета пластин.

    Системы каналов между пластинами соединены каждая со своим коллектором и имеют каждая свои точки входа и выхода теплоносителя на неподвижной плите.
    На раме теплообменника укрепляется пакет пластин.

    Принцип работы пластинчатого теплообменника

    Конструктивная схема пластинчатого теплообменника. Основные узлы и детали

    Устройство рамы теплообменника: неподвижная плита, подвижная плита, штатив, верхняя и нижняя направляющие, и стяжные болты.

    При сборке направляющие – верхняя и нижняя – сначала закрепляются на штативе и неподвижной плите. Далее, на направляющие надевается сначала пакет пластин, а затем подвижная плита. Подвижную и неподвижную плиты стягивают болтами.

    Одноходовые теплообменники сконструированы таким образом, что присоединительные патрубки расположены на неподвижной плите. Для того, чтобы крепить теплообменник к строительным или технологическим конструкциям, на штативе и неподвижной плите имеются монтажные пятки.

    Виды и типы пластинчатых теплообменников

    Пластинчатые теплообменники делятся по конструкции и по размеру теплообменной пластины на нескольких видов.

    По конструкции теплообменники делят на:

    • одноходовые;
    • двухходовые с циркуляционной линией и без нее;
    • двухходовые, выпускающиеся в виде моноблока. Используются для систем горячего водоснабжения;
    • трехходовые.

    Преимущества пластинчатых теплообменников

    Пластинчатые теплообменники имеют следующие преимущества по сравнению с другими видами:

    Уменьшение площади, которое занимает теплообменное оборудование.

    Способность к самоочищению теплообменника.

    Высокий коэффициент теплопередачи.

    Маленькие потери давления.

    Уменьшение расхода электроэнергии.

    Простота ремонта оборудования.

    Небольшое время, необходимое для ремонта оборудования.

    Небольшая величина недогрева.

    Компактность

    Основной фактор, играющий большую роль при компоновке и размещении оборудования – его компактность. Размеры пластинчатого теплообменника меньше, чем, например, кожухотрубного. Более высокое значение коэффициента теплопередачи позволяет достичь и более компактных размеров. Так, теплопередающая поверхность составляет 99,0 – 99,8% от общей площади пластины.

    Далее, все подсоединительные порты находятся на его неподвижной плите, что делает монтаж и подключение теплообменника значительно более простым. Кроме того, для ремонтных работ требуется значительно меньше площади, чем при ремонте теплообменников другого типа.

    Небольшая величина недогрева

    Движение теплоносителя по каналам тонким слоем, высокая турбулентность его потока обеспечивает высокий коэффициент теплоотдачи. При этом гофрированная поверхность пластины дает возможность получить турбулентный поток уже при относительно небольших скоростях движения потока теплоносителя. Поэтому величина недогрева в этом случае при расчетных режимах работы достигает 1-2 оС, в то время как для кожухотрубных теплообменников в лучшем случае эта величина составляет 5-10 оС.

    Низкие потери давления

    Конструктивная особенность пластинчатых теплообменников позволяет уменьшать гидравлическое сопротивление, например, за счет плавного изменения общей ширины канала. Кроме этого, максимальная величина допустимых гидравлических потерь может быть уменьшена увеличением количества каналов в теплообменнике. В свою очередь, уменьшение гидравлического сопротивления снижает расход электроэнергии на насосах.

    Небольшие трудозатраты при ремонте теплообменника

    Периодические ремонты оборудования всегда связаны со сборно- разборочными работами. Демонтаж кожухотрубного теплообменника – это весьма сложное инженерное мероприятие. Для демонтировки и извлечения пучка труб необходимо использование подъемных механизмов и весь процесс разборки занимает достаточно много времени. При ремонте пластинчатого теплообменника применение подъемных механизмов не требуется. С ремонтом свободно и достаточно быстро справится бригада в 2-3 человека.

    Кроме того, мощность теплообменника может быть плавно изменена увеличением поверхности теплообмена. Это его особенность важна, когда, например, при расширении производства, возникает необходимость увеличения мощности теплообменного оборудования. В этом случае достаточно, не заменяя всего теплообменника, прибавить нужное количество пластин.

    Область применения

    • Охлаждение воды на промышленных ТЭС
    • В сталелитейном производстве
    • Автомобильная промышленность
    • В системах отопления, водоснабжения и вентиляции в любых зданиях применяются пластинчатые теплообменники разборного типа;
    • Пластинчатые теплообменники используются на производстве в системе душевых сеток;
    • Воду в бассейнах подогревают часто именно пластинчатыми теплообменниками;
    • Пластинчатые теплообменники служат для охлаждения жидких пищевых продуктов, гидравлического, трансформаторного и моторного масел;
    • Для систем напольного отопления используют пластинчатые теплообменники разборные;
    • Теплоснабжение небольших районов или высотных зданий обеспечивается зачастую пластинчатыми теплообменниками.

    Пластинчатые теплообменники

    Назначение

    Пластинчатые теплообменники – это устройства, используемые для передачи тепловой энергии от одного (более горячего) потока к другому (более холодному) потоку через разделяющие их тонкие металлические пластины, которые стягиваются прижимными плитами, образуя единую конструкцию.

    Пластинчатые теплообменники повышают энергоэффективность, потому что энергия потоков, уже находящихся в системе, может быть передана в другую часть процесса, а не просто потрачена впустую. В новую эру устойчивого развития растущая настоятельная необходимость экономии энергии и снижения общего воздействия на окружающую среду сделала больший акцент на использовании теплообменников с более высокой тепловой эффективностью. В этом новом сценарии пластинчатый теплообменник может сыграть важную роль.

    История

    Пластинчатые теплообменники были впервые введены в 1923 году для пастеризации молока, но в настоящее время используются во многих областях применения в химической, нефтяной, климатической, холодильной, молочной, фармацевтической, пищевой и медицинской промышленности. Это связано с их уникальными преимуществами, такими как гибкая тепловая конструкция (пластины могут быть просто добавлены или удалены для удовлетворения различных требований к тепловому режиму или обработке), простота очистки для поддержания строгих гигиенических условий, хороший контроль температуры (необходимый в криогенных процессах) и лучшие характеристики теплопередачи.

    Типы пластинчатых теплообменников

    Пластинчатый теплообменник (ПТ) – это компактный тип теплообменника, который использует серию тонких пластин для передачи тепла между двумя жидкостями. Существует четыре основных типа ПТ:

    • разборные,
    • паяные,
    • сварные
    • полусварные.

    Пластинчатый разборный теплообменник – устройство, в котором основную функцию теплопередачи между теплоносителями выполняет пакет пластин. Среды не смешиваются между собой благодаря чередованию пластин с плотными резиновыми прокладками, которые образуют два контура движения (рисунок 1).

    Рисунок 1 – Разборные пластинчатые теплообменники

    Свое название «разборные» подобный тип агрегатов получил за то, что пакет пластин не только собирается, но и разбирается во время регулярного обслуживания (промывки) или ремонта.

    Конструкция разборного теплообменника

    Разборный теплообменник состоит из следующих элементов:

    • пакета тонких прямоугольных пластин с отверстиями, через которые протекают два потока жидкости, где происходит теплопередача. Пластины теплообменного аппарата, выполнены из нержавеющей стали или титана, прижимаются друг к другу с использованием уплотнительных прокладок. Количество пластин зависит от технических параметров и требований к оборудованию.
    • рамная пластина (неподвижная прижимная плита),
    • прижимная пластина (подвижная прижимная плита), прижимает весь пакет к неподвижной прижимной плите с помощью элементов крепления: стяжных болтов, подшипников, стопорных шайб.
    • несущая база – направляющая балка, на которую надеваются пластины во время сборки агрегата.
    • опорная станина – вертикальный элемент, к которому прикрепляются направляющие балки (верхняя и нижняя несущие балки).
    • верхние и нижние стержни и винты для сжатия пакета пластин.

    Индивидуальный пластинчатый теплообменник может вместить до 700 пластин. Когда пакет пластин сжимается, отверстия в углах пластин образуют непрерывные туннели или коллекторы, через которые текучие среды проходят, пересекая пакет пластин и выходя из оборудования. Промежутки между тонкими пластинами теплообменника образуют узкие каналы, которые попеременно пересекаются горячей и холодной жидкостями и обеспечивают небольшое сопротивление теплопередаче.

    Типовые пластины и прокладки

    Пластины

    Самая важная и самая дорогая часть ПТ – это его термические пластины, которые изготавливаются из металла, металлического сплава или даже специальных графитовых материалов, в зависимости от области применения.

    Примеры материалов для изготовления ПТ, обычно встречающиеся в промышленном применении:

    • нержавеющая сталь,
    • титан,
    • никель,
    • алюминий,
    • инколой,
    • хастеллой,
    • монель,
    • тантал.

    Пластины могут быть плоскими, но в большинстве случаев имеют гофры, которые оказывают сильное влияние на теплогидравлические характеристики устройства. Некоторые из основных типов пластин показаны на рисунке 3, хотя большинство современных ПТ используют шевронные типы пластин.

    Рисунок 3 – Типичные категории пластинчатых гофр: (а) стиральная доска, (б) зигзагообразная, (в) шевронная или елочка, (г) выступы и углубления, (д) стиральная доска со вторичными гофрами, (е) косая стиральная доска.

    Каналы, образованные между соседними пластинами, создают закрученное движение для жидкостей, как видно на рисунке 4.

    Рисунок 4 – Турбулентный поток в каналах пластинчатого теплообменника

    Угол шеврона обращен в смежных листах, так что, когда пластины затягиваются, гофры обеспечивают многочисленные точки контакта, которые поддерживают оборудование. Уплотнение пластин достигается прокладками, установленными по периметру.

    Рисунок 5 – Технические характеристики пластин

    Прокладки

    Прокладки обычно представляют собой формованные эластомеры, выбранные на основе их совместимости с жидкостью и условий температуры и давления. Многопроходные устройства могут быть реализованы в зависимости от расположения прокладок между пластинами. Бутиловые или нитрильные каучуки – это материалы, обычно используемые при изготовлении прокладок.

    Рисунок 6 – Технические характеристики прокладок

    Схемы движения потоков в пластинчатом теплообменнике

    Однопроходная схема

    Простейшие схемы пластинчатых теплообменников – это те, в которых обе жидкости делают только один проход, поэтому нет никакого изменения направления потоков. Они известны как однопроходные схемы 1-1, и есть два типа: противоточные и параллельные. Большим преимуществом однопроходной компоновки является то, что входы и выходы жидкости могут быть установлены в неподвижной пластине, что позволяет легко открывать оборудование для технического обслуживания и очистки, не нарушая работу трубопроводов. Это наиболее широко используемая однопроходная конструкция, известная как U-образная компоновка. Существует также однопроходная Z-схема, в которой имеется вход и выход жидкости через обе торцевые пластины (рисунок 9).

    Противоточный поток, где потоки текут в противоположных направлениях, обычно предпочтительнее из-за достижения более высокой тепловой эффективности, по сравнению с параллельным потоком, где потоки текут в одном направлении.

    Многопроходная схема

    Многопроходные устройства могут также использоваться для повышения теплопередачи или скорости потока потоков и обычно требуются, когда существует существенная разница между расходами потоков (рисунок 10).

    Рисунок 10 – Многопроходный пластинчатый теплообменник

    Пластины ПТ могут обеспечивать вертикальный или диагональный поток, в зависимости от расположения прокладок. Для вертикального потока вход и выход данного потока расположены на одной стороне теплообменника, тогда как для диагонального потока они находятся на противоположных сторонах. Сборка пакета пластин включает чередование пластин “а” и “в” для соответствующих потоков. Монтаж пакета пластин в режиме вертикального потока требует только соответствующей конфигурации прокладок, поскольку устройства А и в эквивалентны (они поворачиваются на 180°, как показано на рисунке 11а). Это невозможно в случае диагонального потока, для которого требуются оба типа монтажных пластин (рисунок 11б). Плохое распределение потока с большей вероятностью происходит в массиве вертикального потока.

    Рисунок 11 – (a) пластина с вертикальным потоком, (б) пластина с диагональным потоком

    Принцип работы и схема пластинчатого теплообменника

    Теплообменник — это простое по своей конструкции оборудование, которое часто включается в схему различного рода промышленных устройств. В некоторых случаях пластинчатые теплообменники применяются в бытовых системах кондиционирования и охлаждения. Как ясно из названия, предназначены эти аппараты для отбора тепловой энергии от одной среды и передачи другой.

    Особенности конструкции

    Основное предназначение любого вида пластичного теплообменника состоит в преобразовании нагретой жидкости в охлажденную среду. Конструкция пластинчатого теплообменника имеет разборные части, а состоит устройство из следующих элементов:

    • набора пластин;
    • подвижной и неподвижной плиты;
    • верхней и нижней направляющей округлой формы;
    • элементов крепления, которые объединяют плиты в общую раму.

    Размеры рам разных изделий могут значительно различаться. Они будут зависеть от теплоотдачи и мощности нагревателя — с большим количеством пластин повышается продуктивность оборудования и, естественно, увеличивается вес и габариты.

    Преимущества пластинчатых приборов:

    • незначительные производственные и инвестиционные затраты;
    • высокоэффективная теплопередача;
    • малые габариты;
    • эффект самоочистки с помощью высокого турбулентного потока;
    • возможность увеличить КПД благодаря добавлению пластин;
    • высокая степень надежности;
    • легкость промывки;
    • небольшая масса;
    • легкость монтажа;
    • минимальное загрязнение поверхностей;
    • невозможность смешения жидкостей за счет особой конфигурации уплотнения;
    • высокая устойчивость к коррозии;
    • минимальная поверхность теплообмена благодаря высокому КПД;
    • незначительные потери давления благодаря оптимальному выбору пластин с разными видами профилей;
    • эффективная регулировка температуры за счет небольшого объема теплоносителя.

    В этом видео вы узнаете, как образуется горячая вода благодаря теплообменнику:

    Устройство пластин

    Конструкция и принцип работы пластинчатого теплообменника будет зависеть от модификации оборудования, в котором может находиться разное количество пластин с зафиксированными прокладками. Эти прокладки перекрывают каналы с проходящим тепловым носителем. Чтобы достигнуть необходимой герметичности прилегания пар соединенных между собой прокладок, достаточно крепления этих пластин с подвижной плитой.

    Нагрузки, которые действуют на это устройство, распределяются, как правило, на пластины и уплотнители. Рама и элементы крепежа, по большому счету, представляют собой корпус оборудования.

    Рельефная поверхность пластин во время сжатия гарантирует прочное крепление и позволяет всей системе теплообменника набрать необходимую прочность и жесткость.

    Прокладки фиксируются на пластинах с помощью клипсового соединения. Необходимо сказать, что прокладки во время зажатия самостоятельно центрируются относительно своей оси. Утечка теплового носителя предотвращается благодаря окантовке обшлага, который дополнительно создает барьер.

    Для устройства пластинчатого теплообменника изготавливаются несколько видов уплотнителей: с жестким и мягким рифлением.

    Подробнее о теплообменном оборудовании:

    В мягких пластинах каналы находятся под углом 30 градусов. Этот вид устройств характеризуется высокой теплопроводностью, но незначительной стойкостью к давлению теплового носителя.

    В жестких элементах при изготовлении канавок делается угол в 60 градусов. Для этих устройств не характерна повышенная теплопроводность, их основное достоинство — возможность переносить значительное давление теплоносителя.

    Для достижения наилучшего режима тепловой отдачи можно комбинировать пластины. Причем нужно учитывать, что для оптимальной работы устройства необходимо, чтобы оно функционировало в режиме турбулентности — тепловой носитель обязан передвигаться по каналам без каких-либо задержек. Между прочим, кожухотрубный теплообменник, где конструкция имеет схему «труба в трубе», обладает ламинарным течением теплоносителя.

    В чем состоит преимущество? Во время одинаковых теплотехнических характеристик пластинчатое оборудование имеет значительно меньшие габариты.

    Требования к прокладкам

    К аппаратам с пластинами предъявлены довольно жесткие требования касательно герметичности оборудования, именно по этой причине на сегодняшний день прокладки начали изготавливать из полимеров. К примеру, этиленпропилен может с легкостью эксплуатироваться в условиях повышенных температур — и пара, и жидкости. Однако довольно быстро начинает разрушаться в среде, которая содержит большое количество жиров и кислот.

    Теплообменники различаются количеством пластин

    Крепление уплотнителей к пластинам производится чаще всего с помощью клипсовых замков, в редких случаях — с помощью клеящего состава.

    Принцип работы

    Если рассматривать, как работает пластинчатый теплообменник, то его принцип действия нельзя назвать очень простым. Пластины развернуты друг к другу под углом 180 градусов. Чаще всего в одном пакете находится по две пары пластин, которые создают 2 коллекторных контура: входа и выхода теплового носителя. Причем необходимо учитывать, что пара, которая находится с края, не задействуется во время теплообмена.

    Сегодня изготавливается несколько различных типов теплообменников, которые, в зависимости от механизма работы и конструкции, делятся на:

    • двухходовые;
    • многоконтурные;
    • одноконтурные.

    Принцип работы одноконтурного аппарата следующий. Циркуляция теплоносителя в приборе по всему контуру производится перманентно в одном направлении. Помимо этого, производится и противоток тепловых носителей.

    Многоконтурные устройства применяются лишь во время незначительного различия между температурой обратки и входящего теплоносителя. Движение воды при этом производится в различных направлениях.

    Подробнее о пластинчатом теплообменнике:

    Двухходовые устройства имеют два независимых контура. С условием постоянной регулировки тепловой подачи использование этих устройств является наиболее целесообразным.

    Область использования

    Сегодня есть несколько разновидностей теплообменников.

    При этом каждый из приборов имеет уникальную конструкцию и особенность работы:

    • спаянный;
    • разборной;
    • полусварной;
    • сварной.

    Устройства с разборной системой зачастую применяются в тепловых сетях, которые подведены к жилым домам и зданиям разного предназначения, в климатических системах и холодильных камерах, бассейнах, теплопунктах и контурах ГВС. Паяные приборы нашли свое предназначение в морозильных установках, вентиляционных сетях, устройствах кондиционирования, промышленном оборудовании разного предназначения, компрессорах.

    Подробное устройство пластинчатого теплообменника

    Полусварные и сварные теплообменники применяются в:

    • вентиляционных и климатических системах;
    • фармацевтической и химической области;
    • циркуляционных насосах;
    • пищевой сфере;
    • системах рекуперации;
    • аппаратах для охлаждения приборов разного предназначения;
    • в отопительных контурах и ГВС.

    Наиболее популярным видом теплообменника, который применяется в быту, является паяный, обеспечивающий обогрев либо охлаждение теплоносителя.

    Характеристики и расчет

    Пластины и уплотнители в качестве главных деталей теплообменных устройств производятся из разных по своим показателям и характеристикам материалов. Во время выбора в пользу определенного изделия основную роль играет его предназначение и сфера применения.

    Если рассматривать отопительные системы и ГВС, то в этой сфере чаще всего используются пластины, которые сделаны из нержавейки, и пластичные уплотнители из специальной резины NBR или EPDM. Наличие пластин из нержавеющей стали дает возможность работать с тепловым носителем, нагретым до 120 градусов, в другом же случае теплообменник может разогревать жидкость до 180°C.

    Между пластинами для герметизации расположены прокладки

    При применении теплообменников в промышленной сфере и их подключении к технологическим процессам с действием масел, кислот, жиров, щелочей и других агрессивных сред используются пластины, которые сделаны из титана, бронзы и иных металлов. В этих случаях требуется установка асбестовых или фторкаучуковых прокладок.

    Выбор теплообменника выполняется с учетом расчетов, которые производятся с помощью специального программного обеспечения.

    Во время расчетов необходимо учитывать:

    • расход нагреваемой жидкости;
    • изначальная температура теплового носителя;
    • затраты теплоносителя на отопление;
    • необходимая температура прогревания.

    В качестве нагревающей среды, которая протекает через теплообменник, может применяться нагретая вода до температуры 90-120°C или пар с температурой до 170°C. Тип теплового носителя подбирается с учетом вида используемого котельного оборудования. Размеры и число пластин выбираются так, чтобы получился теплоноситель с температурой, которая соответствует действующим стандартам — не выше 65°C.

    Теплообменник может быть изготовлен из разных видов металла

    Необходимо сказать, что главными техническими характеристиками, которые при этом также считаются и основными преимуществами, являются компактные габариты оборудования и возможность обеспечить довольно значительный расход.

    Диапазон площадей обмена и вероятных расходов у аппаратов довольно высокий. Самые маленькие из них, к примеру, от компании Alfa Laval, имеют размер поверхности до 1 м² и при этом обеспечивают прохождение количества теплоносителя до 0,3 м³/час. Наиболее же габаритные приборы имеют размер около 2500 м² и расход, который превышает 4000 м³/час.

    Способы обвязки

    Теплообменные приборы чаще всего устанавливаются в отдельных помещениях, обслуживающих частные постройки, многоэтажные здания, теплопункты центральных магистралей, промышленные предприятия.

    Небольшой вес и габариты оборудования дают возможность производить установку довольно быстро, хотя определенные изделия, которые обладают большой мощностью, нуждаются в сооружении фундамента.

    Монтаж и обслуживание теплообменника лучше доверить специалистам

    Во время монтирования аппарата нужно соблюдать основное правило: заливка болтов в фундаменте, с помощью которых теплообменник прочно крепится, производится в любом случае. Схема обвязки должна обязательно предусматривать подводку теплоносителя к находящемуся наверху патрубку, а к установленному внизу штуцеру производится подсоединение обратного контура. Подача разогретой жидкости подключается наоборот.

    В подающем контуре требуется наличие циркуляционного насоса. Помимо основного, непременно устанавливается и одинаковый с ним по мощности запасной насос.

    Если в ГВС находится магистраль обратного передвижения воды, то механизм работы и схема несколько меняется. Горячая вода, которая подается по контуру, перемешивается с холодной из водопровода, и только после этого смесь подается в теплообменник. Регулировка температуры на выходе производится с помощью электронного блока, который управляет клапаном входящего теплового носителя.

    Чем больше пластин в теплообменнике, тем выше мощность

    В двухступенчатой системе можно использовать тепловую энергию обратной магистрали. Это дает возможность рациональней применять имеющееся тепло и снизить чрезмерную нагрузку на котельное оборудование.

    В любой из вышеописанных схем обвязки на входе в теплообменник обязан находиться фильтр. С его помощью можно не допустить засорения системы и продлить срок ее эксплуатации.

    При всех иных достоинствах пластинчатые теплообменники не опережают старые кожухотрубчатые модели только по одному важному показателю: во время обеспечения значительного расхода пластинчатые устройства недостаточно нагревают теплоноситель. Этот недостаток устраняется расчетом незначительного запаса при выборе количества пластин.

    Характеристика пластинчатых теплообменников:

    Пластинчатые теплообменники

    Теплообменник и его виды

    Теплообменник работает как аппарат-посредник между двумя средами, имеющими разную температуру. Существуют устройства регенеративного и рекуперативного типа, отличающиеся принципом работы.

    В регенеративных теплообменниках предусмотрена одна рабочая поверхность, с которой по очереди контактируют жидкие среды. Рекуперативные аппараты имеют стенку из теплопроводного материала, которая отделяет движущиеся среды друг от друга. В промышленности получили распространение устройства именно такого типа.

    Разновидности рекуперативных теплообменников:

    1. Пластинчатые – сборные модификации из соединенных модульных пластин с бесклеевыми термостойкими прокладками между ними (самый популярный вариант);
    2. Кожухотрубные – сварные или припаянные конструкции из труб, образующих решетку;
    3. Витые – оснащены концентрическими змеевиками, теплоноситель направляется по спиральной трубе и межтрубному пространству;
    4. Спиральные – металлические конструкции, изготавливаются из тонких металлических листов, свернутых в своеобразную спираль;
    5. С водяным или воздушным принципом работы.

    Конструкция

    К элементам конструкции пластинчатого теплообменника относятся:

    • две плиты (фиксированная и прижимная);
    • входные и выходные патрубки с соединениями разных типов;
    • набор герметично соединенных пластин, направляющих, резьбовых метизов;
    • подставка для установки в системе теплоснабжения.

    Основной рабочий элемент конструкции – пластины из инертных материалов для передачи энергии между теплоносителями. Выполненные методом штамповки, они устойчивы к коррозии и воздействию любых агрессивных сред.

    В собранном виде теплообменный аппарат состоит из плотно (герметично) примыкающих друг к другу пластин. На их стыке образуются каналы (щели). Толщина пластин варьируется от 0,4 до 1 мм. Они не отличаются по форме и выполнены из нержавеющей стали, реже из титана и других дорогих сплавов. Требования к материалу определяются задачами, для которых теплообменник предназначен.

    В качестве изолирующего материала чаще всего задействуют каучук или полимерные композиты. При выборе следует учитывать жесткость условий эксплуатации, температурный диапазон, тип рабочей среды.

    Рекомендуемые виды полимеров в зависимости от характеристик активных сред:

    • вода и гликоль – EPDM;
    • масляные и нефтесодержащие теплоносители – Nitril;
    • высокотемпературная среда, пар – Viton.

    Основные виды пластинчатых теплообменников, их предназначение и преимущества:

    1. Разборные (конструкция представляет собой пакет пластин и резиновые уплотнители):

    • низкие затраты на производство и монтаж;
    • регулируемая, легко настраиваемая производительность;
    • несложная дешевая эксплуатация, быстрый ремонт;
    • безотказность, минимальные интервалы простоя;
    • низкая энергоемкость;
    • возможность переработки.

    Сфера применения пластинчатого теплообменника с разборной конструкцией: системы отопления, бассейны, холодильное и климатическое оборудование, горячее водоснабжение, теплопункты.

    2. Паяные (цельная конструкция со спаянными пластинами, без резиновых прокладок):

    • компактность и низкая стоимость;
    • оптимальное соотношение производительности и стоимости;
    • быстрый и дешевый монтаж и сборка;
    • надежность и безотказность.

    Область применения паяных конструкций: холодильные аппараты, компрессоры и турбинные установки, кондиционеры и вентиляторы, промышленные установки разного назначения.

    3. Сварные и полусварные (соединенные при помощи сварных швов):

    • простая компактная конструкция без уплотняющих прокладок;
    • регулируемый поток;
    • устойчивость к действию агрессивных сред;
    • максимальный диапазон температур;
    • допустимое давление до 4 МПа, температура до 300 °С;
    • простота монтажа;
    • устойчивость к абразивным и агрессивным веществам;
    • надежность и длительный рабочий ресурс.

    Сфера применения сварных и полусварных агрегатов: пищевая, химическая и фармацевтическая отрасль, системы кондиционирования и охлаждения, в том числе в промышленности и медицине, работа тепловых насосов и систем горячего водоснабжения.

    Пластинчатые теплообменники – технические характеристики

    Пластинчатый теплообменник отличается довольно высокими показателями мощности. Режим температуры теплоносителя может достигать 180 градусов. Надежные пластинчатые теплообменники широко применяются в сферах отопления, энергетики, пищевой промышленности, климатическом, холодильном и вентиляционном оборудовании.

    Основные характеристики агрегата будут различаться в зависимости от типа конструкции и модели:

    Паяные Разборные Полусварные Сварные
    Наивысший показатель температуры 220°C 200°C 350°C 900°C
    Наивысший показатель давления 25 Бар 25 Бар 55 Бар 100 Бар
    Наивысший показатель мощности 5 Мвт 75 Мвт 75 Мвт 100 Мвт
    КПД 90% 95% 85% 85%
    Гарантийный срок 20 лет 20 лет 10-15 лет 10-15 лет

    К стандартным техническим параметрам пластинчатых аппаратов относятся:

    1. Материал пластин – чаще всего листовая тонкая сталь AISI304 или AISI316, титан, сплавы 254 SMO, хастеллой (на основе никеля).
    2. Температурный максимум теплоносителя, на который рассчитаны пластины – 180°C.
    3. Предельное давление среды – 25 кгс/кв.см.
    4. Площадь поверхности теплообмена – 0,1-2100 кв.м.
    5. Количество пластин 7-10 штук и более, зависит от сферы применения.

    При выборе конкретной модели целесообразно учитывать условия эксплуатации – для большей мощности требуется больше пластин. Их количество определяет производительность и полезное действие системы теплоподачи или охлаждения.

    Технические характеристики герметичных пластинчатых теплообменников MIT

    Тип 504 513 514 521 522 617
    Ширина, мм 200 360 360 460 460 337
    Высота, мм 480 930 930 1090 1090 1047
    Глубина, мм 200-400 250-1000 250-1000 250-1500 250-1500 250-1250
    Диапазон гор.оси, мм 70 140 140 210 210 150
    Диапазон верт.оси, мм 381 640 640 720 720 800
    Макс. Раб.давл., бар 20 20 20 20 20 20
    Испытательное давл., бар 25 25 25 25 25 25
    Вес, кг 23+0.25n 98+0.75n 98+0.75n 225+1.1n 225+1.1n 116+0.91n
    Диаметр соединения 1 1/4″ Резьбовое 2″ Резьбовое или фальцевое 2″ Резьбовое или фальцевое 4″ Фальцевое 4″ Фальцевое 2 1/2″ Резьбовое или фальцевое

    Более подробную информацию по техническим характеристикам можно узнать в этом каталоге

    Технические характеристики сварных пластинчатых теплообменников MIT

    Тип ВЗ-012 ВЗ-014 ВЗ-020 ВЗ-027 ВЗ-030
    Ширина, мм 72 77 72 111 95
    Высота, мм 186 207 314 311 325
    Глубина, (мин-макс) 7+2.3n 7+2.3n 7+2.3n 9+2.4n 9+1.5n
    Диапазон гор.оси, мм 40 42 42 50 39
    Диапазон верт.оси, мм 154 172 278 250 269
    Макс. Раб.давл., бар 30 30 30 30 30
    Испытательное давл., бар 45 45 45 45 45
    Вес, кг 0.6+0.044n 0.7+0.06n 1.1+0.09n 1.2+0.013n 1+0.09n

    Более подробную информацию по техническим характеристикам можно узнать в этом каталоге

    Отраслевое применение пластинчатых теплообменников

    На коммунальных объектах

    Пластинчатые теплообменники помогают решать широкий спектр задач: подогревать воду для горячего водоснабжения, бойлеров и бассейнов, систем вентиляции и теплых полов. Их часто задействуют в составе независимого контура отопительной системы, питающейся от ТЭЦ или ЦТП. При этом температура не должна превышать 180 °C, давление – 16 кПа.

    В пищевой промышленности

    Теплообменники как элемент охладительного, испарительного и пастеризующего оборудования незаменимы в производстве молочных продуктов, сахара, растительных масел, пива, спирта. Самые востребованные в пищевой промышленности модификации – разборные и паяные.

    Металлургия и судостроение

    Многие технологические процессы в металлургии связаны с сильным нагреванием конструкций и агрегатов. Теплообменники охлаждают оборудование и рабочие среды, смазку в гидравлике и травильные растворы. В судостроении теплообменники применяют для охлаждения двигателя, в составе отопительной системы и ГВС.

    Нефтегазовая отрасль

    Теплообменники необходимы, чтобы охлаждать горячие вещества и подогревать жидкости. Они входят в состав сетевых комплексов, систем подготовки воды и аппаратов низкого давления. В нефтегазовом производстве востребованы титановые конструкции с листом до 0,7 мм и уплотнителем из полимеров NBR или «Витон».

    Техническое Задание и Опросный лист по отраслям :

    • ТЗ расчета теплообменника для холодильной промышленности;
    • ТЗ расчета теплообменника для энергетики и нефтегаза;
    • ТЗ расчета теплообменника для теплоснабжения и ЖКХ;
    • ТЗ расчета теплообменника для перерабатывающей промышленности;
    • ТЗ расчета теплообменника для морского применения;
    • ТЗ расчета теплообменника для фармацевтики;
    • ТЗ расчета теплообменника для машиностроения и металлургии;

    Технические преимущества конструкции

    Если сравнивать технические параметры с кожухотрубными моделями, можно выделить следующие особенности разборных пластинчатых конструкций:

    1. Повышенный индекс теплопередачи (3-5 вместо 1);
    2. Допустимая разность температур рабочих сред всего 1-2% (в кожухотрубных конструкциях 5-10 градусов);
    3. Есть возможность произвольно менять площадь поверхности, просто добавляя и убирая пластины;
    4. При сборке не требуется сварка и вальцовка за счет разборной конструкции;
    5. Более простое обслуживание, осмотр, диагностика неполадок, удобный доступ к внутренним элементам, замена и промывка пластин;
    6. В 8 раз меньше затраты времени на разборку (15 минут вместо 2 часов);
    7. Простая и оперативная замена уплотнителей (клей не используется);
    8. Моментальное обнаружение течи без разборки устройства;
    9. Неподверженность коррозии и нечувствительность к вибрациям;
    10. Ресурс безотказной работы до капитального ремонта 20 лет (кожухотрубные модели требуют ремонта через 5-10 лет);
    11. Пластинчатые агрегаты выигрывают в весе и размерах;
    12. Не требуется теплоизоляция и специальный фундамент.

    Принцип работы и устройство пластинчатого теплообменника

    В каждой из пластин для теплоносителя и уплотнения предусмотрено по два отверстия:

    1. для подведения и отведения разогретого теплоносителя;
    2. для герметичного соединения пластин и изоляции теплоносителей за счет компактных уплотнителей.

    Характерная особенность и преимущество пластинчатого теплообменника в том, что движение теплоносителя сопровождается завихрениями потока, что резко усиливает обмен тепловой энергией. Сопротивление при этом минимальное, что сокращает образование накипи. За счет многократного и интенсивного теплового обмена эффективность работы и КПД пластинчатого теплообменника одни из самых высоких.

    Последствия неправильного подбора теплообменника

    Для длительной безотказной эксплуатации важно выбрать модель, которая будет оптимальной для конкретных сред, температурных режимов, мощности и периодичности нагрузки. Выбрать подходящий по всем критериям вариант может только специалист. Обращение к профессионалам гарантирует отсутствие поломок в течение всего срока службы устройства. Отпадает необходимость в частом сервисном обслуживании и ремонте. Правильный выбор системы исключает распространенную проблему стекловидной накипи, ведущую к поломкам устройства.

    Автоматика и подключение

    При монтаже оборудования важно учитывать, что теплообменник всегда работает как элемент системы. Он не используется в качестве самостоятельного аппарата. Вместе с теплообменником в системе задействовано следующее оборудование: обратные клапаны, запорная арматура (комплекс задвижек, заслонок), контрольно-измерительные аппараты – манометры, термометры, циркуляционные насосы и другие виды приборов и агрегатов.

    Варианты подключения пластинчатого теплообменника, их достоинства и недостатки.

    1. Независимая одноступенчатая параллельная схема.

    • Экономичная установка, экономия свободного пространства;
    • Простота конструкции.
    • Отсутствует подогрев холодного теплоносителя.

    2. Двухступенчатая смешанная схема.

    • За счет подогрева входящего теплоносителя обратным потоком эффективность увеличивается на 40%.
    • При проектировании системы горячего водоснабжения нужно подключать сразу два теплообменника, что удорожает решение.

    3. Двухступенчатая последовательная схема.

    • Стабилизируется сетевая нагрузка, растет эффективность применения теплоносителя.
    • Уменьшаются расходы на 60% в сравнении с параллельной схемой и на 20-25% в сравнении со смешанной.

    • Невозможность 100% автоматизации.

    Подбор пластинчатого теплообменника

    Чтобы правильно подобрать пластинчатый теплообменник, необходимо рассчитать его технические параметры.

    За основу берутся следующие данные:

    1. – схема присоединения ГВС;
    2. – тепловая нагрузка (мощность);
    3. – данные о греющей среде:
      • температура на входе (для зимы/ лета), в °С;
      • температура на выходе (для зимы/ лета), в °С;
      • расход среды (если нет данных по мощности), в куб. м/час;
      • допустимые потери давления (атм.);
    4. – данные о нагреваемой среде:
      • входная температура (зима/лето), в °С;
      • выходная температура (зима/лето), в °С;
      • расход среды (если нет данных по мощности), в куб. м/час;
      • допустимые потери давления (в атм.);
      • запас мощности (в %).

    Пример расчета

    Пластинчатые теплообменники относятся к индивидуальному инженерному оборудованию, которое отдельно выбирается, настраивается и адаптируется под каждый объект. Укажите нам конкретные технические параметры по вашему проекту, и мы сразу рассчитаем, какое оборудование необходимо в вашем случае.

    Чтобы оставить нам данные для расчетов, заполните онлайн форму заявки на сайте, напишите или позвоните. Ниже мы приводим список основных параметров, которые нужны, чтобы рассчитать пластинчатый теплообменник.

    1. Мощность (нагрузка) – количество тепловой энергии, необходимое для отопления и горячего водоснабжения объекта (измеряется в Гкал/час, ккал/час, кВт/час).
    2. Температурные графики – какую температуру дает и забирает обратно теплосеть, какой температурной отметки необходимо достичь.

    Посмотреть эти характеристики можно в договоре с теплосетью. Там приведены технические условия и прописаны температурные графики, а также мощность, отведенная на отопление и горячее водоснабжение.

    Основываясь на предоставленных вами данных, мы рассчитываем теплообменник и информируем вас о его стоимости и условиях поставки. Предоставляем подробный расчет, техническое описание требуемого аппарата с указанием габаритов и веса теплообменника пластинчатого.

    Расчет от нашей компании производится с помощью профессионального программного обсечения

    Преимущества заказа пластинчатого теплообменника у нас:

    1. Точный расчет теплообменника. Подбираем адаптированное оборудование под ваш проект.
    2. Гарантия объективной стоимости. Оптимизируя мощность оборудования, не завышаем цену.
    3. Оперативно обрабатываем заявки.
    4. Организуем изготовление, доставку и подключение пластинчатого теплообменника на выгодных условиях.
    5. Предлагаем оптовые цены за счет прямого сотрудничества с ведущими производителями.
    6. Несем полную ответственность за соблюдение сроков и качество техники.

    Звоните, мы поможем с решением вашей задачи, рассчитаем и спроектируем аппарат, организуем доставку и установку. Предлагаем пластинчатые теплообменники российского производства с высоким КПД и выгодными техническими параметрами и характеристиками. В каталоге представлены приблизительные описания моделей, назначение и особенности эксплуатации теплообменников пластинчатого типа.

  • Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: